Skip to main content

Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections

Abstract

The cassava core collection was selected to represent, with minimum repetitiveness, the potential genetic diversity of the crop. The core (630 accessions) was chosen from the base collection (over 5500 accessions) on the basis of diversity of origin (country and geographic), morphology, isozyme patterns and specific agronomic criteria. To asses the genetic diversity of the core, 521 accessions were typed with four microsatellite loci. Allele diversity and frequency, and size variance of dinucleotide repeats (Rst statistic) were estimated. Microsatellite allele numbers and frequencies varied among countries: Colombia and Brazil had the largest number of different alleles across all loci. Mexico also had a high number, ranking fifth after Peru, Costa Rica and Venezuela (which tied). Unique alleles were present in accessions from Brazil, Colombia, Guatemala, Venezuela and Paraguay. A small number (1.34%) of potential duplicates were identified through isozyme and AFLP profiles. Thus, the present results indicated that traditional markers have been highly effective at selecting unique genotypes for the core. Future selections of cassava germplasm sets can be aided by DNA-based markers to ensure genetically representative, non-redundant samples.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aldrich, P.R., Hamrick, J.L., Chavarriaga-Aguirre, P. and Kochert, G. 1998. Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol. Ecol. 7: 933–944.

    PubMed  CAS  Article  Google Scholar 

  2. 1a.

    Bataillon, T.M., David, J.L. and Schoen, D.I. 1996. Neutral genetic markers and conservation genetics: Simulated germplasm collections. Genetics 144: 409–417.

    PubMed  CAS  Google Scholar 

  3. 2.

    Bonierbale, M.W., Maya, M.M., Carlos, J.L. and Iglesias, C. 1995. Application of molecular markers to describing the genetic structure of cassava gene pools. In: The Cassava Biotechnology Network: Proceedings second international scientific meeting, Bogor, Indonesia, 22- 26 August 1994, Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 106–112.

    Google Scholar 

  4. 3.

    Chavarriaga-Aguirre, P., Maya, M.M., Bonierbale, M.W., Kresovich, S., Fregene, M.A., Tohme, J. and Kochert, G. 1998. Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor. Appl. Genet. 97: 493–501.

    CAS  Article  Google Scholar 

  5. 4.

    Elder, J.K. and Southern, E.M. 1987. Computer-aided analysis of one-dimensional restriction fragment gels. In: M.J. Bishop and C.J. Rawlings (Eds.), Nucleic Acid and Protein Sequence Analysis: A Practical Approach, IRL Press, Oxford, UK, pp. 165–172.

    Google Scholar 

  6. 5.

    Epperson, J.E., Pachico, D.H. and Guevara, C.L. 1997. A cost analysis of maintaining cassava plant genetic resources. Crop Sci 37: 1641–1649.

    Article  Google Scholar 

  7. 5a.

    Garza, C.A. and Freimer, N.B. 1996. Homoplasy for size at microsatellite loci in humans and chimpanzees. Genome Res. 6: 211–217.

    PubMed  CAS  Google Scholar 

  8. 5b.

    Grimaldi, M.C. and Crouau-Roy, B. 1997. Microsatellite allele homoplasy due to variable flanking sequences. J. Mol. Evol.

  9. 6.

    Goldstein, D.B., Ruiz-Linares, A., Cavalli-Sforza, L.L. and Feldman, M.W. 1995. An evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463–471.

    PubMed  CAS  Google Scholar 

  10. 7.

    Hershey, C., Iglesias, C., Iwanaga, M. and Tohme, J. 1994. Definition of a core collection for cassava. In: International Network for Cassava Genetic Resources; Report of the first meeting, held at CIAT, Cali, Colombia, 18- 23 August 1992, International Plant Genetic Resources, Rome Italy, pp. 145–156.

    Google Scholar 

  11. 8.

    IPGRI (International Plant Genetic Resources Institute), CIAT (Centro Internacional de Agricultura Tropical) 1994 Establishment and operation of a pilot in vitro active genebank; Report of a CIAT-IBPGR collaborative project using cassava (Manihot esculenta Crantz) as a model. IPGRI and CIAT, Rome, Italy.

    Google Scholar 

  12. 9.

    Jimenez-Nieto, A. 1994. Identificació n de duplicados del banco de germoplasma de yuca (Manihot esculenta Crantz) del CIAT, B.S. thesis. Universidad Nacional de Colombia, Palmira, Colombia.

    Google Scholar 

  13. 10.

    Kresovich, S., Szewc-McFadden, A.K., Bliek, S.M. and McFerson, J.R. 1995. Abundance and characterization of simple sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor. Appl. Genet. 91: 206–211.

    CAS  Article  Google Scholar 

  14. 11.

    Lefevre, F. and Charrier, A. 1993. Isozyme diversity within African Manihot germplasm. Euphytica 66: 73–80.

    Article  Google Scholar 

  15. 12.

    Michalakis, Y. and Excoffier, L. 1996. A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142: 1061–1064.

    PubMed  CAS  Google Scholar 

  16. 13.

    Mitchell, S.E., Kresovich, S., Jester, C.A., Hernández, J. and Szewc-McFadden, A.K. 1997. Application of multiplex and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37: 617–624.

    CAS  Article  Google Scholar 

  17. 14.

    Nei, M. and Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273.

    PubMed  CAS  Article  Google Scholar 

  18. 15.

    Ocampo, C., Hershey, C., Iglesias, C. and Iwanaga, M. 1993. Esterase isozyme fingerprinting of the cassava germplasm collection held at CIAT. In: W.M. Roca, A.M. Thro (Eds.) Proceedings first international scientific meeting of the Cassava Biotechnology Network, Cartagena, Colombia, 25- 28 August 1992, Centro Internacional de Agricultura Tropical, Cali, Colombia.

    Google Scholar 

  19. 16.

    Ocampo, C., Angel, F. Jiménez, A., Jaramillo, G., Hershey, G., Granados, E. and Iglesias, C. 1995. DNA fingerprinting to confirm possible genetic duplicates in cassava germplasm. In: The Cassava Biotechnology Network: Proceedings second international scientific meeting, Bogor, Indonesia, 22- 26 August 1994, Centro Internacional de Agricultura Tropical, Cali, Colombia, pp. 145–151.

    Google Scholar 

  20. 16a.

    Rasmusson, D.C., Phillips, R.L. 1997. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci. 37: 303–310.

    Article  Google Scholar 

  21. 17.

    Roa, A.C. 1997. Estimació n de la diversidad genética en Manihot spp. mediante morfología y marcadores moleculares, M.S. thesis, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.

    Google Scholar 

  22. 18.

    Roa, A.C., Maya, M.M., Duque, M.C., Tohme, J., Allem, A.C. and Bonierbale, M.W. 1997. AFLP analysis of relationships among cassava and other Manihot species. Theor. Appl. Genet. 95: 741–750.

    CAS  Article  Google Scholar 

  23. 18a.

    Rohlf, E.J. 1994. NTSYS-pc: Numerical Taxonomy and Multivariate System, version 1.80, Exeter Software, Setauket, NY.

    Google Scholar 

  24. 19.

    Sarria, R., Ocampo, C., Ramírez, H., Hershey, C. and Roca, W.M. 1993. Genetics of esterase and glutamate oxaloacetate transaminase isozymes in cassava (Manihot esculenta Crantz). In: W.M. Roca and A.M. Thro (Eds.) Proceedings first international scientific meeting of the Cassava Biotechnology Network, Cartagena. Colombia, 25- 28 August 1992, Centro Internacional de Agricultura Tropical, Cali, Colombia, p. 75.

    Google Scholar 

  25. 20.

    Shriver, M.D., Jin, L., Boerwinkle, E., Deka, R., Ferrel, R.E. and Chakraborty, R. 1995. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol. Biol. Evol. 12: 914–920.

    PubMed  CAS  Google Scholar 

  26. 21.

    SINGER: A database for genetic resources. Electronic file available via the Internet World Wide Web at: URL htpp://noc1.cgiar.org/seartype.htm.

  27. 22.

    Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    PubMed  CAS  Google Scholar 

  28. 23.

    Sneath, P.M. and Sokal, P.R. 1973. Numerical taxonomy: the principles and practice of numerical classification. W.H. Freeman, San Francisco, CA.

    Google Scholar 

  29. 24.

    Tautz, D. 1989. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucl. Acids Res. 17: 6463–6471.

    PubMed  CAS  Google Scholar 

  30. 25.

    Thomas, M.R., Cain, P. and Scott, N.S. 1994. DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol. Biol. 25: 939–949.

    PubMed  CAS  Article  Google Scholar 

  31. 26.

    Vos, P., Hogers, R., Bleeker, M., Reljans, M., van de Lee, T., Hornes, M., Frijters, A., Prot, J., Peleman, J., Kuiper M and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 21: 4407–4414.

    Google Scholar 

  32. 27.

    Ziegle, J.S., Su, Y., Corcoran, K.P., Nie, L., Maryand, P.E., Hoff, L.B., McBride, L.J., Kronick, M.N. and Diehl, S.R., Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14: 1026–1031.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Chavarriaga-Aguirre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chavarriaga-Aguirre, P., Maya, M.M., Tohme, J. et al. Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Molecular Breeding 5, 263–273 (1999). https://doi.org/10.1023/A:1009627231450

Download citation

  • Manihot esculenta Crantz
  • core collection
  • molecular markers
  • germplasm characterization and diversity