Aquatic Geochemistry

, Volume 4, Issue 1, pp 3–47 | Cite as

Humic Ion-Binding Model VI: An Improved Description of the Interactions of Protons and Metal Ions with Humic Substances

  • Edward Tipping
Article

Abstract

Humic Ion-Binding Model VI, a discrete site/electrostatic model of the interactions of protons and metals with fulvic and humic acids, is applied to 19 sets of published data for proton binding, and 110 sets for metal binding. Proton binding is described with a site density, two median intrinsic equilibrium constants, two parameters defining the spread of equilibrium constants around the medians, and an electrostatic constant. Intrinsic equilibrium constants for metal binding are defined by two median constants, log KMA and log KMB, which refer to carboxyl and weaker-acid sites respectively, together with a parameter, ΔLK1, defining the spreads of values around the medians. A further parameter, ΔLK2, takes account of small numbers of strong binding sites. By considering results from many data sets, a universal average value of ΔLK1 is obtained, and a correlation established between log KMB and log KMA. In addition, a relation between ΔLK2 and the equilibrium constant for metal-NH3 complexation is tentatively suggested. As a result, metal-binding data can be fitted by the adjustment of a single parameter, log KMA. Values of log KMA are derived for 22 metal species. Model VI accounts for competition and ionic strength effects, and for proton-metal exchange.

humic substances humic acid fulvic acid protons metals binding model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts J. J., Filip Z. and Hertkorn N. (1992) Fulvic and humic acids isolated from groundwater: compositional characteristics and cation binding. J. Contam. Hydrol. 11, 317-330.Google Scholar
  2. Altmann R. S. and Buffle J. (1988) The use of differential equilibrium functions for interpretation of metal binding in complex ligand systems: Its relation to site occupancy and site affinity distributions. Geochim. Cosmochim. Acta 52, 1505-1519.Google Scholar
  3. Baes C. F. and Mesmer R. E. (1976) The Hydrolysis of Cations.Wiley, New York.Google Scholar
  4. Bartschat B. M., Cabaniss S. E. and Morel F. M. M. (1992) An oligelectrolyte model for cation binding by humic substances. Environ. Sci. Technol. 26, 284-294.Google Scholar
  5. Benedetti M. F., Milne, C. J., Kinniburgh D. G., van Riemsdijk W. H. and Koopal L. K. (1995a) Metal-ion binding to humic substances - application of the nonideal competitive adsorption model. Environ. Sci. Technol. 29, 446-457.Google Scholar
  6. Benedetti M. F., van Riemsdijk W. H. and Koopal L. K. (1995b) Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 29, 446-457.Google Scholar
  7. Benedetti M. F., van Riemsdijk W. H., Koopal L. K., Kinniburgh D. G., Gooddy D. C. and Milne C. J. (1996) Metal ion binding by natural organic matter: from the model to the field. Geochim. Cosmochim. Acta 60, 2503-2513.Google Scholar
  8. Borovec Z., Kribek B. and Tolar V. (1979) Sorption of uranyl by humic acids. Chem. Geol. 27, 39-46.Google Scholar
  9. Brady B. and Pagenkopf G. K. (1978) Cadmium complexation by soil fulvic acid. Can. J. Chem., 56, 2331-2336.Google Scholar
  10. Bresnahan W. T., Grant C. L. and Weber J. H. (1978) Stability constants for the complexation of copper (II) ions with water and soil fulvic acids measured by an ion selective electrode. Anal. Chem. 50, 1675–1679.Google Scholar
  11. Browne B. A. and Driscoll C. T. (1993) pH-Dependent binding of aluminum by a fulvic acid. Environ. Sci. Technol., 27, 915-922.Google Scholar
  12. Buckau G., Kim J. I., Klenze R., Rhee D. S. and Wimmer H. (1992) A comparative spectroscopic study of the fulvate complexation of trivalent transuranium ions. Radiochim. Acta 57, 105-111.Google Scholar
  13. Buffle J., Deladoey P., Greter F. L. and Haerdi W. (1980) Study of the complex formation of copper(II) by humic and fulvic substances. Anal. Chim. Acta 116, 255-274.Google Scholar
  14. Cabaniss S. E. (1991) Carboxylic acid content of a fulvic acid determined by potentiometry and aqueous Fourier transform infrared spectrometry. Anal. Chim. Acta 255, 23-30.Google Scholar
  15. Cabaniss S. E. and Shuman M. S. (1988) Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim. Cosmochim. Acta 52, 185-193.Google Scholar
  16. Clarke N., Danielsson L.-G. and Sparén A. (1995) Studies of aluminium complexation tp humic and fulvic acids using a method for the determination of quickly reacting aluminium. Water, Air, and Soil Pollut. 84, 103-116.Google Scholar
  17. Czerwinski K. R., Buckau G., Scherbaum F. and Kim J. I. (1994) Complexation of the uranyl ion with aquatic humic acid. Radiochim. Acta, 65, 111-119.Google Scholar
  18. Dempsey B. A. (1981) The protonation, calcium complexation and adsorption of a fractionated aquatic fulvic acid. Ph.D. thesis, Johns Hopkins University.Google Scholar
  19. De Wit J. C. M., Van Riemsdijk W. H. and Koopal L. K. (1993a) Proton binding to humic substances. 1. Electrostatic effects. Environ. Sci. Technol. 27, 2005-2014.Google Scholar
  20. De Wit J. C. M., Van Riemsdijk W. H. and Koopal L. K. (1993b) Proton binding to humic substances. 2. Chemical heterogeneity and adsorption models. Environ. Sci. Technol. 27, 2005-2014.Google Scholar
  21. Ephraim J. H. (1986) Studies of the protonation and metal ion complexation equilibria of natural organic acids: fulvic acids. Ph.D. Thesis, State University of New York at Buffalo, NY.Google Scholar
  22. Ephraim J. H. (1992) Heterogeneity as a concept in the interpretation of metal ion binding by humic substances. The binding of zinc by an aquatic fulvic acid. Analytica Chimica Acta 267, 39-45Google Scholar
  23. Ephraim J., Alegret S., Mathuthu A., Bicking M., Malcolm R. L. and Marinsky J. A. (1986) A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid. Environ. Sci. Technol. 20, 354-366.Google Scholar
  24. Ephraim J. and Marinsky J. A. (1986) A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 3. Influence of polyelectrolyte properties and functional heterogeneity on the copper ion binding equilibria in an Armadale horizons Bh fulvic acid sample. Environ. Sci. Technol. 20, 367–376.Google Scholar
  25. Ephraim J. H., Marinsky J. A. and Cramer S. J. (1989) Complex-forming properties of natural organic acids. Fulvic acid complexes with cobalt, zinc and europium. Talanta 36437-443.Google Scholar
  26. Fish W., Dzombak D. A. and Morel F. M. M. (1986) Metal-humate interactions. 2. Application and comparison of models. Environ. Sci. Technol. 20, 676-683.Google Scholar
  27. Fitch A., Stevenson F. J. and Chen Y. (1986) Complexation of Cu(II) with a soil humic acid: response characteristics of the Cu(II) ion-selective electrode and ligand concentration effects. Org. Geochem., 9, 199-216.Google Scholar
  28. Fu G., Allen H. E. and Cao Y. (1992) The importance of humic acids to proton and cadmium binding in sediments. Environ. Toxicol. Chem. 11, 1363-1372.Google Scholar
  29. Fukushima M., Nakayasu K., Tanaka S. and Nakamura H. (1995) Chromium (III) binding abilities of humic acids. Anal. Chim. Acta 317, 195-206.Google Scholar
  30. Giesy J. P., Geiger R. A., Kevern N. R. and Alberts J. J. (1986) UO22+ - Humate interactions in soft, acid, humate-rich waters. J.Environ. Radioact. 4, 39-64.Google Scholar
  31. Hering J. G. and Morel F. M. M. (1988) Humic acid complexation of calcium and copper. Environ. Sci. Technol., 20, 349-354.Google Scholar
  32. Higgo J. J. W., Kinniburgh D. G., Smith B. and Tipping E. (1993) Complexation of Co2+, Ni2+, UO22+ and Ca2+ by humic substances in groundwaters. Radiochim. Acta, 61, 91-103.Google Scholar
  33. Ibarra J. V., Osacar J. and Gavilan J. M. (1981) Acidos humicos de lignitos: II. Complejos con los iones estroncio, plomo, uranilo y torio. Medida de sus constantes de estabilidad. Anales Quim. 77, 224-229.Google Scholar
  34. Kerndorff H. and Schnitzer M. (1980) Sorption of metals on humic acid. Geochim. Cosmochim. Acta 44, 1701-1708.Google Scholar
  35. Kim J. I., Buckau G., Bryant E. and Klenze R. (1989) Complexation of americium(III) with humic acid. Radiochim. Acta, 48, 135-143.Google Scholar
  36. Kim J. I., Rhee D. S. and Buckau G. (1991a) Complexation of Am(III) with humic acids of different origin. Radiochim. Acta, 52/53, 49-55.Google Scholar
  37. Kim J. I., Wimmer H. and Klenze R. (1991b) A study of curium(III) humate complexation by time resolved laser fluorescence spectroscopy (TRLFS) Radiochim. Acta 54, 351-41.Google Scholar
  38. Kinniburgh D. G., Milne C. J., Benedetti M. F., Pinheiro J. P., Filius J., Koopal L. and Van Riemsdijk W. H. (1996) Metal ion binding by humic acid: application of the NICA-Donnan model. Environ. Sci. Technol. 30, 1687-1698.Google Scholar
  39. Lead J. R., Hamilton-Taylor J., Hesketh N., Jones M. N., Wilkinson A. E. and Tipping E. (1994) A comparative study of proton and alkaline earth binding by humic substances. Anal. Chim. Acta, 294, 319-327.Google Scholar
  40. Lee M. H., Choi S. Y., Chung K. H. and Moon H. (1993) Complexation of cadmium(II) with humic acids: effects of pH and humic origin. Bull. Korean Chem. Soc., 14, 726-732.Google Scholar
  41. Marinsky J. A., Gupta S. and Schindler P. (1982) The interactions of Cu(II) ion with humic acid. J. Coll. Int. Sci., 89, 401-411.Google Scholar
  42. Marinsky J. A. and Ephraim J. (1986) A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1. Analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: fundamental concepts. Environ. Sci. Technol. 20, 349-354.Google Scholar
  43. Marinsky J. A., Reddy M. M., Ephraim J. H. and Mathuthu A. (1992) Unpublished manuscript.Google Scholar
  44. Martell A. E. and Smith R. M. (1977) Critical Stability Constants. Vol.3: Other Organic Ligands.Plenum, New York.Google Scholar
  45. Martell A. E. and Hancock R. D. (1996) Metal Complexes in Aqueous Solutions.Plenum, New York.Google Scholar
  46. Mathuthu A. (1987) Ph.D. Thesis, State University of New York at Buffalo.Google Scholar
  47. McKnight D. M. and Wershaw R. L. (1989) Complexation of copper by fulvic acid from the Suwannee River - Effect of counter-ion concentration. In Humic Substances in the Suwannee River, Georgia: Interactions, Properties and Proposed Structures(ed. R. C. Averett et al.) USGS Open File Report 87-557, pp. 63-69.Google Scholar
  48. Milne C. J., Kinniburgh D. G., De Wit J. C. M., Van Riemsdijk W. H. and Koopal L. K. (1995a) Analysis of proton binding by a peat humic acid using a simple electrostatic model. Geochim. Cosmochim. Acta 59, 1101-1112.Google Scholar
  49. Milne C. J., Kinniburgh D. G., De Wit J. C. M., Van Riemsdijk W. H. and Koopal L. K. (1995b) Analysis of metal ion binding by a peat humic acid using a simple electrostatic model. Geochim. Cosmochim. Acta 59, 1101-1112.Google Scholar
  50. Mota A. M., Rato A., Brazia C. and Simôes Gonçalves M.L. (1996) Competition of Al3+ in complexation of humic matter with Pb2+: a comparative study with other ions. Environ. Sci. Technol. 30, 1970-1974.Google Scholar
  51. Moulin V., Robouch P. and Vitorge P. (1987) Spectrophotometric study of the interaction between americium(III) and humic materials. Inorg. Chim. Acta 140, 303-306.Google Scholar
  52. Moulin V, Tits J., Moulin C., Decambox P., Mauchien P. and de Ruty O. (1992) Complexation behaviour of humic substances towards actinides and lanthanides studied by time-resolved laser-induced spectrofluorometry. Radiochim. Acta, 58/59, 121-128.Google Scholar
  53. Nash J. C. and Walker-Smith M. (1987) Non-Linear Parameter Estimation, An Integrated System in BASIC, Dekker, New York.Google Scholar
  54. Nash K. L. and Choppin G. R. (1980) Interaction of humic and fulvic acids with Th(IV). J. Inorg. Nucl. Chem., 42, 1045-1050.Google Scholar
  55. Nordén M., Ephraim J. and Allard B. (1991) Interaction of strontium and europium with an aquatic fulvic acid studied by ultrafiltration and ion exchange techniques. In Humic Substances in the Aquatic and Terrestrial Environments(ed. B. Allard et al.), pp. 297-303. Springer-Verlag, Berlin.Google Scholar
  56. Paxeus N. and Wedborg M. (1985) Acid-base properties of aquatic fulvic acid. Anal. Chim. Acta, 169, 87-98.Google Scholar
  57. Perdue E. M. Reuter J. H. and Parrish R. S. (1984) A statistical model of proton binding by humus. Geochim. Cosmochim. Acta, 49, 1257-1263.Google Scholar
  58. Perdue E. M. and Lytle C. R. (1983) A critical examination of metal-ligand complexation models: application to defined multiligand mixtures. In Aquatic and Terrestrial Humic Materials(eds. R. F. Christman and E. T. Gjessing) pp. 295-313. Ann Arbor Publishers, Michigan.Google Scholar
  59. Pinheiro J. P., Mota A. M. and Simôes Gonçalves M. L. (1994) Complexation study of humic acids with cadmium(II) and lead(II). Analyt. Chim. Acta, 284, 525-537.Google Scholar
  60. Plechanov N., Josefsson B., Dyrssen D. and Lundquist K. (1983) Investigations on humic substances in natural water. In Aquatic and Terrestrial Humic Materials(eds. R.F. Christman and E. T. Gjessing) pp. 387-405. Ann Arbor Publishers, Michigan.Google Scholar
  61. Posner A. M. (1964) Titration curves of humic acid. Proc. 8th Int. Conf. Soil Sci., Part 2, Bucharest, Romania.Google Scholar
  62. Randhawa N. S. and Broadbent F. E. (1965) Soil organic matter-metal complexes: 6. Stability constants of zinc-humic acid complexes at different pH values. Soil Sci. 99, 362-366.Google Scholar
  63. Saar R. A. and Weber J. H. (1979) Complexation of cadmium(II) with water-and soil-derived fulvic acids: effect of pH and fulvic acid concentration. Can. J. Chem. 57, 1263-1268.Google Scholar
  64. Saar R. A. and Weber J. H. (1980a) Comparison of spectrofluorometry and ion-selective potentiometry for determination of complexes between fulvic acid and heavy-metal ions. Anal. Chem. 52, 2095-2100.Google Scholar
  65. Saar R. A. and Weber J. H. (1980b) Lead (II) - fulvic acid complexes. Conditional stability constants, solubility, and implications for lead (II) mobility. Environ. Sci. Technol. 14, 877-880.Google Scholar
  66. Saar R. A. and Weber J. H. (1980c) Lead (II) complexation by fulvic acid: how it differs from fulvic acid complexation of copper (II) and cadmium (II). Geochimica Cosmochim Acta 44, 1381-1384.Google Scholar
  67. Schnitzer M. and Skinner S. I. M. (1966) Organo-metallic interactions in soils: 5. Stability constants of Cu++-, Fe++-, and Zn++-fulvic acid complexes. Soil Sci. 102, 361-365.Google Scholar
  68. Schnitzer M. and Skinner S. I. M. (1967) Organo-metallic interactions in soils: 7. Stability constants of Pb++-, Ni++-, Mn++-, Co++-, Ca++-, and Mg++-fulvic acid complexes. Soil Sci. 103, 247-252.Google Scholar
  69. Shanbhag P. M. and Choppin G. R. (1981) Binding of uranyl by humic acid. J. Inorg. Nucl. Chem., 43, 3369-3372.Google Scholar
  70. Stevenson F. J. (1976) Stability constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Sci. Soc. Am. J., 40, 665–672.Google Scholar
  71. Tanford C. (1961) Physical Chemistry of Macromolecules, Wiley, New York.Google Scholar
  72. Templeton G. D. and Chasteen N. D. (1980) Vanadium-fulvic acid chemistry: Conformational and binding studies by electron spin probe techniques. Geochim. Cosmochim. Acta 44, 741-752.Google Scholar
  73. Tipping E. (1993a) Modeling the competition between alkaline earth cations and trace metal species for binding by humic substances. Environ. Sci. Technol., 27, 520-529.Google Scholar
  74. Tipping E. (1993b) Modelling ion binding by humic acids. Coll. Surf A, 73, 117-131.Google Scholar
  75. Tipping E. (1993c) Modelling the binding of europium and the actinides by humic substances. Radiochim. Acta, 62, 141-152.Google Scholar
  76. Tipping E. (1994) WHAM - A chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comp. Geosci., 20, 973-1023.Google Scholar
  77. Tipping E. (1996) CHUM: a hydrochemical model for upland catchments. J. Hydrol., 174, 304-330.Google Scholar
  78. Tipping E. and Hurley M. A. (1992) A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta, 56, 3627-3641.Google Scholar
  79. Tipping E., Backes C. A. and Hurley M. A. (1988) The complexation of protons, aluminium and calcium by aquatic humic substances: A model incorporating binding-site heterogeneity and macroionic effects. Water Res. 22, 597-611.Google Scholar
  80. Tipping E., Woof C. and Hurley M. A. (1991) Humic substances in acid surface waters; modelling aluminium binding, contribution to chrage-balance, and control of pH. Water Res. 25, 425-435.Google Scholar
  81. Tipping E., Berggren D., Mulder J. and Woof C. (1995a) Modelling the solid-solution distributions of protons, aluminium, base cations and humic substances in acid soils. Eur. J. Soil Sci., 46, 77-94.Google Scholar
  82. Tipping E., Fitch A. and Stevenson F. J. (1995b) Proton and copper binding by humic acid: application of a discrete-site/electrostatic ion-binding model. Eur. J. Soil Sci., 46, 95-101.Google Scholar
  83. Tipping E., Woof C., Kelly M., Bradshaw K. and Rowe J. E. (1995c) Solid-solution distributions of radionculdides in acid soils: application of the WHAM chemical speciation model. Environ. Sci. Technol. 29, 1365-1372.Google Scholar
  84. Torres R. A. and Choppin G. R. (1984) Europium(III) and americium(III) stability constants with humic acid. Radiochim. Acta, 35, 143-148.Google Scholar
  85. Town R. M. and Powell H. K. (1993) Ion-selective electrode potentiometric studies on the complexation of copper (II) by soil-derived humic and fulvic acids. Anal. Chim. Acta 279, 221–233.Google Scholar
  86. Turner D. R., Varney M. S., Whitfield M., Mantoura R. F. C. and Riley J. P. (1986) Electrochemical studies of copper and lead complexation by fulvic acid. I. Potentiometric measurements and a critical comparison of metal binding models. Geochim. Cosmochim. Acta 50, 289-297.Google Scholar
  87. Van Dijk H. (1959) Zur Kenntnis der Basenbindung von Huminsäuren. Z. Pflanzenernähr. Düng. Bodenk., 84, 150-155.Google Scholar
  88. Van Dijk H. (1971) Cation binding of humic acids. Geoderma, 5, 53-67.Google Scholar
  89. Van Loon L. R., Granacher S. and Harduf H. (1992) Equilibrium dialysis-ligand exchange: a novel method for determining conditional stability constants of radionuclide-humic acid complexes. Analyt. Chim. Acta, 268, 235-246.Google Scholar
  90. Westall J. C., Jones J. D., Turner G. D. and Zachara J. M. (1995) Models for the association of metal ions with heterogeneous environmental sorbents. 1. Complexation of Co(II) by leonardite humic acid as a function of pH and NaClO4 concentration. Environ. Sci. Technol. 29, 951-959.Google Scholar
  91. Wilson D. E. and Kinney P. (1977) Effects of polymeric charge variations on the proton-metal ion equilibria of humic materials. Limnol. Oceanogr., 22, 281-289.Google Scholar
  92. Zachara J. M., Resch C. T. and Smith S. C. (1994) Influence of humic substances on Co2+ sorption by a subsurface mineral and its mineralogic components. Geochim. Cosmochim. Acta 58, 553-566.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Edward Tipping
    • 1
  1. 1.Institute of Freshwater Ecology, AmblesideCumbriaUnited Kingdom

Personalised recommendations