Skip to main content

Advertisement

Log in

Geochemical Study of a Granitic Area – The Margeride Mountains, France: Chemical Element Behavior and 87Sr/86Sr Constraints

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

A small watershed (89 km2) underlain by granite or granite-gneiss in the Margeride mountains, southern Massif Central (France), has been studied using the chemical and isotopic composition of its dissolved load, bed sediments and soils. Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for three different hydrologic periods in the main stream of the Desges river and its tributaries.

The aim was to characterize the chemical and isotopic signatures of each reservoir in the watershed; signature changes are interpreted as fluctuations in the different influencing components: rainwater, weathering products and anthropogenic addition. In the study area, as in other watersheds in granite environments, the only source for input of chemical species into the dissolved load at high altitude is chemical weathering and atmospheric deposition, whereas at lower altitude, human influence plays a non-negligible role.

As precipitation is a major vehicle for the addition of dissolved chemical species into the hydrosystem, a systematic rainwater study using an automatic collector was carried out over one year in order to better constrain rain elemental input. Corrections for rainwater addition, using chloride as an atmospheric-input reference, were computed for selected elements and for 87Sr/86Sr ratios. After these correction, the geochemical budget of the watershed was determined and the role of anthropogenic addition was evaluated based on strontium isotope relationships.

For particulate matter, we used the normalization of chemical species relative to parent rocks and the element ratios which reflect the depletion or enrichment in soils and sediments. Both the immobile- and mobile-element approaches have been tested, using Ti/Zr and La/Ce ratios for the former and Ca/Sr, K/Rb, and K/Fe ratios for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarede F. and Semhi K. (1995) Patterns of elemental transport in the bedload of the Meurthe River (NE France). Chem. Geol. 122, 129-145.

    Article  Google Scholar 

  • Bailey S. W., Hornbeck J. W., Driscoll C. T., Gaudette H. E. (1996) Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resources Research 32(3), 707-719.

    Article  Google Scholar 

  • Beaucaire C. and Michard G. (1982) Origin of dissolved minor elements (Li, Rb, Sr, Ba) in superficial waters in a granitic area. Geochem. J. 16, 247-258.

    Google Scholar 

  • Blum J. D., Erel Y. and Brown K. (1994) 87Sr/86Sr ratios of Sierra Nevada stream waters: implications for relative mineral weathering rates. Geochem. Cosmochem. Acta 58, 5019-5025.

    Google Scholar 

  • Bourrie G. (1978) Acquisition de la composition chimique des eaux en climat tempéré. Application aux granites des Vosges et de la Margeride. Sciences Géologiques 52, 174 pp.

    Google Scholar 

  • Bullen T. D., Krabbenhoft D. P., Kendall C. (1996). Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy aquifer, northern Wisconsin, USA. Geochem. Cosmochem. Acta 60, 1807-1821.

    Article  Google Scholar 

  • Clayton J. L. (1988) Some observations of the stoichiometry of feldspar hydrolysis in granitic soils. J. Environ. Qual. 17, 153-157.

    Article  Google Scholar 

  • Coururie J. P. (1972) Carte géologique à l'échelle du 1/50000; feuille Saugues “Margeride Nord”.

  • Couturie J. P. (1977) Le Massif Granitique de la Margeride. Annales Scientifiques de l'Université de Clermont 62, 319 pp.

  • Couturie J. P. and Vachette-Caen, M. (1980) Age westphalien des leucogranites recoupant le granite de Margeride (Massif Central français). CRAS 291, 43-45.

    Google Scholar 

  • Couturie J. P., Vachette-Caen M. and Vialette, Y. (1979) Age namurien d'un laccolite granitique différencié par gravité: le granite de Margeride (Massif Central français). CRAS 289, 449-452.

    Google Scholar 

  • Cullers R. L., Basu A. and Suttner L. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol. 70, 335-348.

    Article  Google Scholar 

  • Dennen W. H. and Anderson P. J. (1962) Chemical changes in incipient rock weathering. Geol. Soc of Amer. Bull. 73, 375-384.

    Google Scholar 

  • Downes H. and Duthou, J. L. (1988) Isotopic and trace element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France). Chem. Geol. 68, 291-308.

    Article  Google Scholar 

  • Drever J. I. (1988) The geochemistry of natural waters. Prentice Hall, 2nd. edition, 430 pp.

  • Drever J. I. and Hurcomb, D. R. (1986) Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade Mountains. Geology 14, 221-224.

    Article  Google Scholar 

  • Drever J. I. and Zobrist, J. (1992) Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochem. Cosmochem. Acta 56, 3209-3216.

    Article  Google Scholar 

  • Dupre B., Gaillardet J., Rousseau D. and Allegre C. J. (1996). Major and trace element of river-borne material: the Congo Basin. Geochem. Cosmochem. Acta 60(8), 1301-1321.

    Article  Google Scholar 

  • Faure, G. (1988) Principles of Isotope Geology. J Whiley & Sons. 589 pp.

  • Gaillardet J., Dupre B. and Allegre C. J. 1996. A geochemical mass-budget model applied to the Congo Basin rivers. Erosion rates and composition of the continental crust. Geochem. Cosmochem. Acta 59, 3469-3485.

    Article  Google Scholar 

  • Gibbs R. J. (1970) Mechanisms controlling world water chemistry. Science 170, 1088-1090.

    Google Scholar 

  • Giovanolli R., Schnoor J. L., Sigg, L., Strumm W. and Zobrist J. (1988) Chemical weathering of crystalline rocks in the catchment area of acidic ticio lakes, Switzerland. Clays and Clay Minerals 36(6), 521-529.

    Google Scholar 

  • Jenkins A., Sloan W. T. and Cosby B. J. (1995) Stream chemistry in the middle hills and high mountains of the Himalayas, Nepal. J. Hyd. 166, 61-79.

    Article  Google Scholar 

  • Law K. R., Nesbitt H. W. and Longstaffe F. J. (1991) Weathering of granitic tills and the genesis of a podzol. Amer. Jour. of Sci. 291, 940-976.

    Article  Google Scholar 

  • Likens E. G., Bormann F. H., Pierce R. S., Eaton, J. S. and Johnson, N. M. (1977) Biogeochemistry of a forested ecosystem. Springer-Verlag. New York; Berlin. 147 pp.

    Google Scholar 

  • Marchand J., Bouiller R., Cornen G., Burg J. P., Lasnier B. and Leyreloup A. (1985) Carte géologique à l'échelle du 1/50000; feuille Langeac.

  • Mast M. A. and Drever J. I. (1990) Chemical weathering in the Loch Vale Watershed, Rocky Mountain National Park, Colorado. Water Res. Research 26(12), 2971-2978.

    Article  Google Scholar 

  • McNutt R. H., Gascoyne M. and Kamineni D.C. (1987) 87Sr/86Sr values in groundwaters of the East Bull Lake pluton, Superior Province, Ontario, Canada. Applied Geochemistry, 2, 93-101.

    Article  Google Scholar 

  • Meybeck M. (1979) Concentrations des eaux fluviales en éléments majeurs et apports en solution aux océans. Revue de Géologie Dynamique et de Géographie Physique 21, 215-246.

    Google Scholar 

  • Meybeck M. (1983) Atmospheric inputs and river transport of dissolved substances. IAHS Publ. 141, 173-192.

    Google Scholar 

  • Meybeck M. (1986) Composition chimique des ruisseaux non pollués de france. Sci. Géol. Bull. 39, 3-77.

    Google Scholar 

  • Middelburg J. J., van der Weilden C. H. and Woittiez J. R. W. (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol, 68, 253-273.

    Article  Google Scholar 

  • Mortatti, J., Probst J. L. and Ferreira J. R. (1992) Hydrological and Geochemical Characteristics of the Jamari and Jiparana River Basins (Rondonia, Brazil). Geo. Journal 26(3), 287-296.

    Google Scholar 

  • Negrel Ph, Allegre B., Dupre B. and Lewin, E. (1993) Erosion sources determined from inversion of major, trace element ratios and strontium isotopic ratio in riverwater: the Congo Basin case. Earth and Planetary Sciences Letters 120, 59-76.

    Article  Google Scholar 

  • Negrel Ph. and Dupre B. 1995. Temporal variations of strontium isotopic ratios of the Oubangui river basin: Implications for the sources of material. Colloques et Séminaires de l'ORSTOM, Grands Bassins Fluviaux, pp. 181-198.

  • Negrel Ph. (1997a) Multi elements chemistry of Loire estuary sediments: Anthropogenic versus natural sources. Estuarine, Coastal and Shelf Sciences 44, 395-411.

    Article  Google Scholar 

  • Negrel Ph. (1997b) Traçage des apports anthropiques sur un petit bassin versant: utilisation des rapports isotopiques du strontium. CRAS, T324, série II, 907-914.

  • Negrel Ph. and Deschamps P. (1996) Natural and anthropogenic budgets of a small watershed in the Massif Central (France): Chemical and strontium isotopic characterization in water and sediments. Aquatic Geochemistry, 2, 1-27.

    Google Scholar 

  • Negrel Ph., Dupre B., Seimbille F. and Allegre C. J. (1988) Quantitative modelisation of differential erosion between cristalline and sedimentary areas of a French basin by isotopic analysis of strontium in river waters. Chem. Geol. 70(1), 13.

    Article  Google Scholar 

  • Negrel Ph., Dupre B., Seimbille F., Birck J. L. and Allegre C. J. (1989) Erosion on the Seine-Yonne basin studied with the strontium isotopes. Terra Nova, 1(1), 100.

    Google Scholar 

  • Negrel Ph. and Roy S. (1998) Rain chemistry in the Massif Central (France): A strontium isotopic and major elements study. App. Geochem. 13(8), 941-952.

    Article  Google Scholar 

  • Nesbitt H.W. (1979) Mobility and fractionation of REE during weathering of a granodiorite. Nature 279, 206-210.

    Article  Google Scholar 

  • Nesbitt H. W., Markovics, G. and Price, R. C. (1980) Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochem. Cosmochem. Acta 44, 1659-1666.

    Article  Google Scholar 

  • Sarazin G. (1979) Géochimie de l'aluminium au cours de l'altération des granites et basaltes sous climat tempéré. Doctoral thesis, University of Paris VII. 169 pp.

  • Sarazin G., Fouillac, C. and Michard, G. (1976) Etude de l'acquisition d'éléments dissous par les eaux de lessivage des roches granitiques sous climat tempéré. Geochem. Cosmochem. Acta 40, 1481-1486.

    Article  Google Scholar 

  • Sarin M. M., Krishnaswami S., Dilli K., Somayajulu B. L. and Moore W. S. (1989) Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochem. Cosmochem. Acta 53, 997-1009.

    Article  Google Scholar 

  • Seimbille, F., Negrel, Ph., Dupre, B. and Allegre, C. J. (1991) Geochemical study of granitic watersheds: what kind of information the isotopic strontium ratio tool can provide. Terra Nova, 3, 11.

    Google Scholar 

  • Sherwood W. C. (1989) Chloride Loading in the South Fork of the Shenandoah River, Virginia, U.S.A. Environ. Geol. Water Sci. 14(2), 99-106.

    Article  Google Scholar 

  • Stallard R. F. (1980) Major elements geochemistry of the Amazon river system. PhD thesis, 325 pp.

  • Stauffer R. E. (1990) Granite weathering and the sensitivity of alpine lakes to acid deposition. Limnol. Oceanogr. 35(5), 1112-1134.

    Article  Google Scholar 

  • Steele J. D. and Pushkar P. (1973) Strontium isotope Geochemistry of the Scioto river basin and the 87Sr/86Sr ratios of the underlying lithologies. The Ohio Journal Sci. 73(6), 331.

    Google Scholar 

  • Stueber A. M., Pushkar P. and Baldwin A. D. (1972) Survey of 87Sr/86Sr ratios and total strontium concentrations in Ohio stream and groundwaters. The Ohio Journal Sci. 72(2), 97.

    Google Scholar 

  • Tardy Y. (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem. Geol. 7, 253-271.

    Article  Google Scholar 

  • van der Weijden, C. H., ten Haven H. L., Boer, H. A., Hopstaken, C. F. A. M. and Vriend S. P. (1978) Geochemical studies in the drainage basin of the Rio Vouga (Portugal). I. General hydrogeochemistry from its origin to the Ria de Aveiro. IAHS 50.

  • Velbel, M. A. (1985) Geochemical mass balances and weathering rates in forested watersheds of the southern blue ridge. J. Sci. 285, 901-930.

    Google Scholar 

  • Zuddas P., Seimbille F. and Michard, G. (1995) Granite-fluid interaction at near-equilibrium conditions: experimental and theoretical constraints from Sr contents and isotopic ratios. Chem. Geol., 121, 145-154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Négrel, P. Geochemical Study of a Granitic Area – The Margeride Mountains, France: Chemical Element Behavior and 87Sr/86Sr Constraints. Aquatic Geochemistry 5, 125–165 (1999). https://doi.org/10.1023/A:1009625412015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009625412015

Navigation