Skip to main content
Log in

Evaluation of AFLP for genetic mapping in Pinus radiata D. Don

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Efficient construction of reasonable density genetic linkage maps is an essential component of QTL detection programmes. The AFLP technique has been used to produce genetic linkage maps in a range of species. We have developed protocols to generate reproducible AFLP profiles in Pinus radiata and have evaluated the inheritance and informativeness of AFLP markers in this important timber species. The large genome size of P. radiata necessitated increased levels of selection at both the pre-amplification and selective amplification steps of the AFLP protocol to generate reproducible AFLP profiles. Once optimised ca. 41.3 scorable AFLP bands were resolvable through denaturing gels, of which 48.4% were polymorphic in a screen of eight unrelated trees. This level of polymorphism is ca. three times higher than with RAPD markers. The total number of bands and the number of polymorphismic bands per PCR were ca. halved when AFLPs were electrophoresed on non-denaturing gels and stained with ethidium bromide. Using the protocols developed, AFLP is an efficient method for generating the DNA markers required for genetic linkage map construction in P. radiata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arumuganathan K, Earle ED: Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218 (1991).

    CAS  Google Scholar 

  2. Bassam BJ, Caetano-Anollés G, Gresshoff PM: Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196: 80–83 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. Cato SA, Richardson TE: Inter-and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don. Theor Appl Genet 93: 587–592 (1996).

    CAS  Google Scholar 

  4. Chalhoub BA, Thibault S, Laucou V, Rameau C, Höfte H, Cousin R: Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. BioTechniques 22: 216–220 (1997).

    PubMed  CAS  Google Scholar 

  5. Devey ME, Bell JC, Smith DN, Neale DB, Moran GF: A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet 92: 673–679 (1996).

    Article  CAS  Google Scholar 

  6. Echt CS, Nelson CD: Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor Appl Genet 94: 1031–1037 (1997).

    Article  CAS  Google Scholar 

  7. Ellsworth DL, Rittenhouse KD, Honeycutt RL: Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14: 214–217 (1993).

    PubMed  CAS  Google Scholar 

  8. Fisher PJ, Gardner RC, Richardson TE: Single locus microsatellites isolated using 5′ anchored PCR. Nucl Acids Res 24: 4369–4371 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. Fisher PJ, Richardson TE, Gardner RC: Characteristics of single-and multi-copy microsatellites from Pinus radiata. Theor Appl Genet 96: 969–979 (1998).

    Article  CAS  Google Scholar 

  10. Grattapaglia D, Sederoff R: Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: mapping strategy and RAPD markers. Genetics 137: 1121–1137 (1994).

    PubMed  CAS  Google Scholar 

  11. Hall JM, LeDuc CA, Watson AR, Roter AH: An approach to high-throughput genotyping. Genome Res 6: 781–790 (1996).

    PubMed  CAS  Google Scholar 

  12. Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R: PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93: 1202–1210 (1996).

    Article  CAS  Google Scholar 

  13. Kent J, Richardson TE: Fluorescently labelled multiplexed chloroplast microsatellites for high-throughput paternity analysis in Pinus radiata. Z J For Sci 27: 305–312 (1997).

    CAS  Google Scholar 

  14. Kuang H, Richardson TE, Carson SD, Bongarten BC: An allele responsible for seedling death in Pinus radiata D. Don. Theor Appl Genet 96: 640–644 (1998).

    Article  CAS  Google Scholar 

  15. Lehner A, Campbell MA, Wheeler NC, Pöykkö T, Glössl J, Kreike J, Neale DB: Identification of a RAPD marker linked to the pendula gene in Norway spruce (Picea abies (L.) Karst. f. pendula). Theor Appl Genet 91: 1092–1094 (1995).

    Article  CAS  Google Scholar 

  16. Lumsden JM, Lord EA, Cato SA, Richardson TE, van Stijn TC, Broom MF, Patel K, Montgomery GW. The application of AFLP fingerprinting to construct a YAC contig containing ADH2 and MTP on sheep chromosome 6. Cytogenet Cell Genet, in press (1999).

  17. Maheswaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N: Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94: 39–45 (1997).

    Article  CAS  Google Scholar 

  18. Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM: Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93: 392–401 (1996).

    Article  CAS  Google Scholar 

  19. Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C: A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249: 74–81 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. Paglia G, Morgante M: PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed 4: 173–177 (1998).

    Article  CAS  Google Scholar 

  21. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A: The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225–238 (1996).

    Article  CAS  Google Scholar 

  22. Powell W, Thomas WTB, Baird E, Lawrence P, Booth A, Harrower B, McNicol JW, Waugh R: Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79: 48–59 (1997).

    Article  CAS  Google Scholar 

  23. Richardson T, Cato S, Ramser J, Kahl G, Weising K: Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucl Acids Res 23: 3798–3799 (1995).

    PubMed  CAS  Google Scholar 

  24. Rouppe van der Voort JNAM, van Zandvoort P, van Eck HJ, Folkertsma RT, Hutten RCB, Draaistra J, Gommers FJ, Jacobsen E, Helder J, Bakker J: Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet 255: 438–447 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R: Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95: 714–722 (1997).

    Article  CAS  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989).

    Google Scholar 

  27. Smith DN, Devey ME: Occurrence and inheritance of microsatellites in Pinus radiata. Genome 37: 977–983 (1994).

    PubMed  CAS  Google Scholar 

  28. Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE: Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Bio/technology 10: 686–690 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23: 4407–4414 (1995).

    PubMed  CAS  Google Scholar 

  30. Wakamiya I, Newton RJ, Johnston JS, Price HJ: Genome size and environmental factors in the genus Pinus. Am J Bot 80: 1235–1241 (1993).

    Article  Google Scholar 

  31. Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W: Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255: 311–321 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. Weeden NF, Timmerman GM, Hemmat M, Kneen BE, Lodhi MA: Inheritance and reliability of RAPD markers. In: Applications of RAPD Technology to Plant Breeding. Joint Plant Breeding Symposia Series, 1 November, Minneapolis, MN, pp. 12–17 (1992).

  33. Welsh J, McClelland M: Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18: 7213–7218 (1990).

    PubMed  CAS  Google Scholar 

  34. Wilcox PL, Amerson HV, Kuhlman EG, Liu B-H, O'Malley DM, Sederoff RR: Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci USA 93: 3859–3864 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531–6535 (1990).

    PubMed  CAS  Google Scholar 

  36. Zabeau M, Vos P: Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application 92402629.7, Publication EP 0534858-A1 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cato, S., Corbett, G. & Richardson, T. Evaluation of AFLP for genetic mapping in Pinus radiata D. Don. Molecular Breeding 5, 275–281 (1999). https://doi.org/10.1023/A:1009612709760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009612709760

Navigation