Applied Psychophysiology and Biofeedback

, Volume 25, Issue 1, pp 13–32 | Cite as

Self-regulation of Slow Cortical Potentials in Children with Migraine: An Exploratory Study

  • Michael Siniatchkin
  • Anke Hierundar
  • Peter Kropp
  • Ralf Kuhnert
  • Wolf-Dieter Gerber
  • Ulrich Stephani


Migraine patients are characterized by increased amplitudes of slow cortical potentials (SCPs), representing pronounced excitability of cortical networks. The present study investigated the efficiency of biofeedback training of SCPs in young migraineurs. Ten children suffering from migraine without aura participated in 10 feedback sessions. They were compared with 10 healthy children for regulation abilities of cortical negativity and with 10 migraineurs from the waiting list for clinical efficacy. During the first two sessions, the migraine children were characterised by lacking ability to control cortical negativity, especially during transfer trials, compared with healthy controls. However, there was no difference following 10 sessions of training. Feedback training was accompanied by significant reduction of cortical excitability. This was probably responsible for the clinical efficacy of the training; a significant reduction of days with migraine and other headache parameters was observed. It is suggested that normalization of the threshold regulation of cortical excitability during feedback training may result in clinical improvement.

self-regulation slow cortical potentials migraine psychological treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achenbach, T. M. (1991). Integrative guide for the 1991 CBCL/4–18, YSR, and TRF profiles. Burlington, VT, University of Vermont.Google Scholar
  2. Afra, J., Marcia, A., Gerard, P., Maertens de Noordhout, A., & Schoenen, J. (1998). Interictal cortical excitability in migraine: A study using transcranial magnetic stimulation of motor and visual cortices. Annals of Neurology, 44, 209-215.Google Scholar
  3. Afra, J., Proietti Cecchini, A., De Pasqua, V., Albert, A., & Schoenen, J. (1998). Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain, 121, 233-241.Google Scholar
  4. Aurora, S. K., Ahmad, B. K., Welch, K. M., Bhardhwaj, P., & Ramadan, N. M. (1998). Transkranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology, 50, 1111-1114.Google Scholar
  5. Barkley, G. L., Tepley, N., Simkins, R., Moran, J., & Welch, K. M. A. (1990). Neuromagnetic fields in migraine: Preliminary findings. Cephalalgia, 10, 171-176.Google Scholar
  6. Besken, E., Pothmann, R., & Sartory, G. (1993). Contingent negative variation in childhood migraine. Cephalalgia, 13, 42-43.Google Scholar
  7. Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Review, 70, 1-41.Google Scholar
  8. Birbaumer, N., Roberts, L. E., Lutzenberger, W., Rockstroh, B., & Elbert, T. (1992). Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84, 354-361.Google Scholar
  9. Böcker, K. B. E., Timsit-Berthier, M., Schoenen, J., & Brunia, C. H. M. (1990). Contingent negative variation in migraine. Headache, 30, 604-609.Google Scholar
  10. Brody, S., Rau, H., Köhler, F., Schupp, H., Lutzenberger, W., & Birbaumer, N. (1994). Slow cortical potential biofeedback and the startle reflex. Biofeedback and Self-Regulation, 19, 1-11.Google Scholar
  11. Buggle, F., & Baumgärtel, F. (1972). Hamburger Neurotizismus-und Extraversionsskala für Kinder und Jugendliche. Göttingen: Hogrefe Verlag.Google Scholar
  12. Del Bene, E. (1982). Multiple aspects of headache risk in children. In M. D. Critchley, A. P. Friedman, S. Gorini, & F. Sicuteri (Eds.), Advances in neurology (pp. 187-198). New York: Raven Press.Google Scholar
  13. Diener, C. H., Scholz, E., Dichgans, J., & Gerber, W. D. (1989). Central effects of drugs used in migraine prophylaxis evaluated by visual evoked potentials. Annals of Neurology, 25, 125-130.Google Scholar
  14. Elbert, T. (1993). Slow cortical potentials reflect the regulation of cortical excitability. In W. C. McCallum & H. Curry (Eds.), Slow potentials in the human brain (pp. 235-252). New York: Plenum Press.Google Scholar
  15. Elbert, T., & Rockstroh, B. (1987). Threshold regulation—A key to the understanding the combined dynamics of EEG and event-related potentials. Journal of Psychophysiology, 4, 317-333.Google Scholar
  16. Elbert, T., Rockstroh, B., Lutzenberger, W., & Birbaumer, N. (1980). Biofeedback of slow cortical potentials. I. Electroencephalography and Clinical Neurophysiology, 48, 293-301.Google Scholar
  17. Evers, S., Bauer, B., Grotemeyer, K., Kurlemann, G., & Husstedt, I. W. (1998). Event-related potentials (P300) in primary headache in childhood and adolescence. Journal of Child Neurology, 13, 322-326.Google Scholar
  18. Evers, S., Bauer, B., Suhr, B., Husstedt, I. W., & Grotemeyer, K. H. (1997). Cognitive processing in primary headache: A study on event-related potentials. Neurology, 48, 108-113.Google Scholar
  19. Evers, S., Quibelday, F., Grotemeyer, K-H., Suhr, B., & Husstedt, I-W. (1999). Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval, Cephalalgia, 19, 485-491.Google Scholar
  20. Ferrari, M. D. (1998). Migraine. Lancet, 351, 1043-1051.Google Scholar
  21. Ferrari, M. D., Odink, J., & Bos, K. D. (1990). Neuro-excitatory plasma aminoacids are elevated in migraine. Neurology, 40, 1582-1586.Google Scholar
  22. Ferrari, M., & Saxena, P. R. (1993). On serotonin and migraine: A clinical and pharmacological review. Cephalalgia, 13, 151-165.Google Scholar
  23. Gerber, W. D., & Schoenen, J. (1998). Biobehavioral correlates in migraine: The role of hypersensitivity and information-processing dysfunction. Cephalalgia, 18,Suppl. 21, 5-11.Google Scholar
  24. Goadsby, P. J. (1997). Bench to bedside: What have we learnt recently about headache? Current Opinions in Neurology, 10, 215-220.Google Scholar
  25. Hermann, C., Kim, M., & Blanchard, E. B. (1995). Behavioral and prophylactic pharmacological intervention studies of paediatric migraine: An exploratory meta-analysis. Pain, 60, 239-255.Google Scholar
  26. Kotchoubey, B., Schneider, D., Schleichert, H., Stehl, U., Uhlmann, C., Blankenhorn, V., Froscher, W., & Birbaumer, N. (1996). Self-regulation of slow cortical potentials in epilepsy: A retrial with analysis of influencing factors. Epilepsy Research, 25, 269-276.Google Scholar
  27. Kratzmeier, H., & Horn, R. (1979). Paven Standard Progressive Matrices (German Edition). Berlin: Beltztest.Google Scholar
  28. Kropp, P., & Gerber, D. (1993). Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia, 13, 37-41.Google Scholar
  29. Kropp, P., & Gerber, W. D. (1995). Contingent negative variation during migraine attack and interval: Evidence for normalisation of slow cortical potentials during the attack. Cephalalgia, 15, 123-128.Google Scholar
  30. Kropp, P., & Gerber, W. D. (1998). Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neuroscience Letters, 257, 73-76.Google Scholar
  31. Lodi, R., Montagna, P., Soriani, S., Iotti, S., Arnaldi, C., Cortelli, P., Pierangeli, G., Patuelli, A., Zaniol, P., & Barbiroli, B. (1997). Deficit of brain and sceletal muscle bioenergetics and low brain magnesium in juvenile migraine: An in vivo 31P magnetic resonance spectroscopy study. Paediatric Research, 42, 866-871.Google Scholar
  32. Lutzenberger, W., Elbert, T., Rockstroh, B., & Birbaumer, N. (1982). Biofeedback produced slow brain potentials and task performance. Biological Psychology, 14, 99-111.Google Scholar
  33. Lutzenberger, W., Haag, G., Birbaumer, N., & Stegagno, L. (1980). Biofeedback langsamer kortikaler Potentiale (LKP): Der Zusammenhang von LKP und Reaktionslatenz bei Patienten mit psychosomatischen Störungen. Medizinische Psychologie, 6, 140-151.Google Scholar
  34. Lutzenberger, W., Roberts, L. E., & Birbaumer, N. (1993). Memory performance and area-specific self-regulation of slow cortical potentials: Dual-task interference. International Journal of Psychophysiology, 15, 217-226.Google Scholar
  35. Maertens de Noordhout, A., Timsit-Berthier, M., Timsit, M., & Schoenen, J. (1987). Contingent negative variation in headache. Annals of Neurology, 19, 78-80.Google Scholar
  36. Maertens de Noordhout, A., Timsit-Berthier, M., Timsit, M., & Schoenen, J. (1988). Effects of beta blockade on contingent negative variation in migraine. Annals of Neurology, 21, 111-112.Google Scholar
  37. Maytal, J., Young, M., Shechter, A., & Lipton, R. B. (1997). Pediatric migraine and the International Headache Society criteria. Neurology, 48, 602-607.Google Scholar
  38. Rockstroh, B. (1987). Operant control of slow brain potentials. In J. N. Hengtgen, D. Hellhammer, & G. Huppmann (Eds.), Advanced Methods in Psychobiology (pp. 179-190). C. J. Hogrefe, Inc.Google Scholar
  39. Rockstroh, B., Elbert, T., Birbaumer, N., & Lutzenberger, W. (1990). Biofeedback-produced hemispheric asymmetry of slow cortical potentials and its behavioral effects. International Journal of Psychophysiology, 9, 151-165.Google Scholar
  40. Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., Daum, I., Lutzenberger, W., & Dichgans, J. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63-72.Google Scholar
  41. Rockstroh, B., Elbert, T., Lutzenberger, W., & Birbaumer, N. (1980). Slow cortical potentials and response speed. In H. H. Kornhuber & L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use (pp. 431-434). North-Holland: Elsevier.Google Scholar
  42. Rockstroh, B., Elbert, T., Lutzenberger, W., & Birbaumer, B. (1982). The effect of slow cortical potentials on response speed. Psychophysiology, 19, 211-217.Google Scholar
  43. Rockstroh, B., Elbert, T., Lutzenberger, W., & Birbaumer, N. (1990). Biofeedback: Evaluation and therapy in children with attentional dysfunction. In A. Rothenberger (Ed.), Brain and Behaviour in Child Psychiatry (pp. 345-357). Berlin: Springer Verlag.Google Scholar
  44. Roberts, L. E., Birbaumer, N., Rockstroh, B., Lutzenberger, W., & Elbert, T. (1989). Self-report during feedback regulation of slow cortical potentials. Psychophysiology, 26, 392-403.Google Scholar
  45. Sartory, G., Besken, E., & Pothmann, R. (1997). Contingent negative variation in childhood migraine. Journal of Psychophysiology, 11, 138-146.Google Scholar
  46. Schneider, F., Elbert, T., Heimann, H., Welker, A., Stetter, F., Mattes, R., Birbaumer, N., & Mann, K. (1993). Self-regulation of slow cortical potentials in psychiatric patients: Alcohol dependency. Biofeedback and Self-Regulation, 18, 23-32.Google Scholar
  47. Schneider, F., Rockstroh, B., Heimann, H., Lutzenberger, W., Mattes, R., Elbert, T., Birbaumer, N., & Bartels, M. (1992). Self-regulation of slow cortical potentials in psychiatric patients: Schizophrenia. Biofeed-back and Self-Regulation, 17, 292-312.Google Scholar
  48. Schoenen, J. (1996). Abnormal cortical information processing between migraine attacks. In M. Sandler, M. Ferrari, & S. Harnett (Eds.), Migraine: Pharmacology and genetics (pp. 233-253). London: Altman.Google Scholar
  49. Schoenen, J. (1998). The pathophysiology of migraine: A review based on the literature and on personal contributions. Functional Neurology, 1, 7-16.Google Scholar
  50. Siniatchkin, M., Gerber, W. D., Kropp, P., & Vein, A. (1999). How the brain anticipates an attack—A study of neurophysiological periodicity in migraine. Functional Neurology, 14, 69-77.Google Scholar
  51. Siniatchkin, M., Gerber, W. D., & Vein, A. (1998). Clinical efficacy and central mechanisms of cyclandelate in migraine: A double-blind placebo-controlled study. Functional Neurology, 13, 47-56.Google Scholar
  52. Siniatchkin, M., Kropp, P., Gerber, W. D., & Vein, A. (1998). Contingent negative variation in patients with chronic daily headache. Cephalalgia, 18, 565-569.Google Scholar
  53. Speckmann, E. J., Caspers, H., & Elger, C. E. (1984). Neuronal mechanisms underlying the generation of field potentials. In T. Elbert, B. Rockstroh, W. Lutzenberger, & N. Birbaumer (Eds.), Self-regulation of the brain and behavior (pp. 9-25). Berlin: Springer Verlag.Google Scholar
  54. Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Test manual for the State-Trait-Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  55. Stiensmeier-Polster, J., Schürmann, M., & Duda, K. (1989). Depressionsinventar für Kinder und Jugendliche (DIKJ). Göttingen: Hogrefe.Google Scholar
  56. Trimmel, M. (1987). Contingent negative variation (CNV) influenced by preceding slow potential shifts (pSPSs). Electroencephalography and Clinical Neurophysiology, 66, 71-74.Google Scholar
  57. Van der Kamp, W., van den Brink, A., Ferrari, M. D., & van Dijk, J. G. (1996). Interictal cortical hyperexcitability in migraine patients demonstrated with transcranial magnetic stimulation. Journal of Neurological Sciences, 139, 106-110.Google Scholar
  58. Wang, W., & Schoenen, J. (1998). Interictal potentiation of passive “oddball” auditory event-related potentials in migraine. Cephalalgia, 18, 261-265.Google Scholar
  59. Wang, W., Timsit-Berthier, M., & Schoenen, J. (1996). Intensity dependence of auditory evoked potentials is pronounced in migraine: An indication of cortical potentiation and low serotonergic neurotransmission. Neurology, 46, 1404-1409.Google Scholar
  60. Welch, K. M. A. (1998). Current opinions in headache pathogenesis: Introduction and synthesis. Current Opinions in Neurology, 11, 193-197.Google Scholar
  61. Welch, K. M. A., Cao, Y., Aurora, S., Wigins, G., & Vikingstad, E. M. (1998). MRI of the occipital cortex, red nucleus, and substantia nigra during visual aura of migraine. Neurology, 51, 1465-1469.Google Scholar
  62. Welch, K. M. A., & Lewis, D. (1997). Migraine and epilepsy. Neurologicy Clinics, 15, 107-114.Google Scholar
  63. Welch, K. M. A., & Ramadan, N. M. (1995). Mitochondria, magnesium and migraine. Journal of Neurological Sciences, 134, 9-14.Google Scholar
  64. Weiller, C., May, A., Limmroth, V., Jupner, M., Kaube, V., Schayck, R. V., Coenen, H. H., & Diener, H. C. (1995). Brain stem activation in spontaneous human migraine attacks. Nature Medicine, 1, 658-660.Google Scholar
  65. Woods, R. P., Iacoboni, M., & Mazziotta, J. C. (1994). Bilateral spreading cerebral hypoperfusion during spontaneous migraine attack. New England Journal of Medicine, 331, 1689-1692.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Michael Siniatchkin
    • 1
    • 2
  • Anke Hierundar
    • 1
  • Peter Kropp
    • 1
  • Ralf Kuhnert
    • 1
  • Wolf-Dieter Gerber
    • 1
  • Ulrich Stephani
    • 3
  1. 1.Department of Medical PsychologyNeurological Clinic of Kiel UniversityKielGermany
  2. 2.Department of Medical PsychologyUniversity Clinic of KielKielGermany
  3. 3.Department of NeuropediatricsUniversity of KielGermany

Personalised recommendations