Skip to main content
Log in

Crystal structure and spectroscopy of a hydrogen-bridged one-dimensional Cu(II) complex containing both octahedral and square pyramidal geometries in the same unit cell

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Single crystals of the helical hydrogen-bridged one-dimensional Cu(II) complex, [Cu(stpy)2(CH3COO)2(H2O)2] (1) [Cu(stpy)2(CH3COO)2(H2O)] (2), are prepared and characterized by elemental and thermal analyses, IR, electronic and X-ray crystal structure determination. The crystals are monoclinic, of space group C2/c, with unit cell parameters a = 31.842(7) Å, b = 5.9829(10) Å, c = 30.970(14) Å, β = 111.78(3)°, Z = 4. The asymmetric unit contains two different types of Cu(II) polyhedra, namely, octahedron and square pyramid within the same unit cell. 1 has elongated octahedral geometry with two nitrogen atoms from stpy and two oxygen atoms from synmonodentate acetate ligands, transcoordinated to Cu(II) in the basal plane. The oxygen atoms of the two water molecules occupy the axial positions. 2 has Cu(II) coordination polyhedra similar to 1, except that only one of the apical positions is occupied by a water molecule. The structure consists of two independent linear chains, one involving octahedral (1) and the other involving square-pyramidal (2) polyhedra, held by hydrogen bridges. The Cu–Cu intra- and interchain separations in both 1 and 2 are 5.983 and 8.214 Å. The unit cell packing shows weak π-stacking between adjacent coordinated stpy ligands in the chain, resulting in ladder-type structure. Further, the extended packing reveals helical arrangement of Cu(II) polyhedra in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn, J.M. Supramolecular Chemistry, Concepts and Perspectives; VCH: Weinheim, Germany, 1995.

    Google Scholar 

  2. Vogtle, F. Supramolcular Chemistry; Wiley: Chichester, UK, 1991.

    Google Scholar 

  3. Su, D.; Wang, X.; Simard, M.; Wuest, J.D. Supramol. Chem. 1995, 6, 171.

    Google Scholar 

  4. Desiraju, G.R., Ed. Perspectives in Supramolecular Chemistry, The Crystal as Supramolecular Entity; Wiley: Chichester, 1995; Vol. 2.

    Google Scholar 

  5. Jeffrey, G.A.; Saenger, W. Hydrogen Bonding in Biological Structures; Berlin, 1991.

  6. Whitesides, G.M.; Mathias J.P.; Seto, C.T. Science 1991, 254, 1312.

    Google Scholar 

  7. Desiraju, G.R. Crystal Engineering. The Design of Organic Solids; Elsevier: Amsterdam, 1989.

    Google Scholar 

  8. Pranata, J.; Wierschka, S.G.; Jorgensen, W.L. J. Am. Chem. Soc. 1991, 113, 2810.

    Google Scholar 

  9. Krishnakumar, R.; Balasubramanian, S.; Israel Goldberg, Inorg. Chem. 1998, 37, 541.

    Google Scholar 

  10. Ulvenlund, S.; Georgopoulou, A.S.; Mingos, D.M.P.; Baxter, I.; Lawrence, S.E.; White, A.J.P.; Williams, D.J. J. Chem. Soc., Dalton Trans. 1998, 1869.

  11. Tadokoro, M.; Isobe, K.; Uekusa, H.; Ohashi, Y.; Toyoda, J.; Tashiro, K.; Nakasuji, K. Angew. Chem., Int. Ed. 1999, 38, 1377.

    Google Scholar 

  12. Wang, X.; Simard, M.; Wuest, J.D. J. Am. Chem. Soc. 1994, 116, 12119.

    Google Scholar 

  13. James, S.L.; Verspui, G.; Spek, A.L.; van Koten, G. Chem. Comm. 1996, 1309.

  14. Kukushkin, V.Y.; Nishioka, T.; Tudela, D.; Isobe K.; Kinoshita, I. Inorg. Chem. 1997, 36, 6157.

    Google Scholar 

  15. Roux, C.; Zarembowitch, J.; Gallois, B.; Granier, T.; Claude, R. Inorg. Chem. 1994, 33, 2273.

    Google Scholar 

  16. Boillot, M.L.; Roux, C.; Audiere, J.P.; Dausse, A.; Zarembowitch, J. Inorg. Chem. 1996, 35, 3975.

    Google Scholar 

  17. Karunakaran, C.; Justin Thomas, K.R.; Shunmugasundaram, A.; Murugesan, R. J. Incl. Phenom. Macrocyclic Chem. 2000, 38, 233.

    Google Scholar 

  18. Lester, H. J. Org. Chem. 1956, 21, 1039.

    Google Scholar 

  19. Roux, C.; Zarembowitch, J.; Gallois, B.; Bolte, M. New J. Chem. 1992, 16, 671.

    Google Scholar 

  20. Bassett, J; Denney, R.C.; Jeffery, G.H.; Mendham, J. Vogel's Textbook of Quantitative Inorganic Analysis; Longman: London, 1978, p 323.

    Google Scholar 

  21. Sheldrick, G.M. SHELXS-86, Program for the Solution of Crystal Structures; University of Goettingen: Germany, 1986.

    Google Scholar 

  22. Sheldrick, G.M. SHELXL-93, Program for the Crystal Structure Determination; University of Goettingen: Germany, 1993.

    Google Scholar 

  23. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, 1974, Vol. 4.

  24. Hathaway, B.J. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed,; Pergamon: New York, 1987, Vol. 5.

    Google Scholar 

  25. Solomon, E.I.; Baldwin, M.J.; Lowery, M.D. Chem. Rev. 1992, 92, 521.

    Google Scholar 

  26. Addison, A.W.; Rao, T.N.; Reedijk, J.; Van Rijn, J.; Verschool, G.C.; J. Chem. Soc., Dalton Trans. 1984, 1349.

  27. Muetterties, E.L.; Guggerberger, L.J. J. Am. Chem. Soc. 1974, 96, 1748.

    Google Scholar 

  28. Cartwright, B.A.; Couchman, L.; Skapski, A.C. Acta Crystallogr. 1979, B35, 824.

    Google Scholar 

  29. Abuhijleh, A.L.; Woods, C. Inorg. Chim. Acta 1992, 194, 9.

    Google Scholar 

  30. Karunakaran, C.; Justin Thomas, K.R.; Shunmugasundaram, A.; Murugesan, R. J. Chem. Crystallogr. 1999, 29, 413.

    Google Scholar 

  31. Karunakaran, C.; Justin Thomas, K.R.; Shunmugasundaram, A.; Murugesan, R. J. Mol. Struct. 2000, 523, 213.

    Google Scholar 

  32. Lin, S.J.; Hong, T.N.; Tung, J.Y.; Chen, J.H. Inorg. Chem. 1997, 36, 3886.

    Google Scholar 

  33. Dyer, J.R. Applications of Absorption Spectroscopy of Organic Compounds; Prentice Hall of India: New Delhi, 1987, p 33.

    Google Scholar 

  34. Lever, A.B.P. J. Chem. Educ. 1974, 51, 612.

  35. Balagopalakrishna, C.; Rajasekharan, M.V.; Bott, S.; Atwood, J.L.; Ramakrishna, B.L. Inorg. Chem. 1992, 31, 2843.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunakaran, C., Thomas, K.J., Shunmugasundarama, A. et al. Crystal structure and spectroscopy of a hydrogen-bridged one-dimensional Cu(II) complex containing both octahedral and square pyramidal geometries in the same unit cell. Journal of Chemical Crystallography 30, 351–357 (2000). https://doi.org/10.1023/A:1009569426357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009569426357

Navigation