Skip to main content
Log in

Random Fractal Time Series and the Teen-Birth Phenomenon

  • Published:
Nonlinear Dynamics, Psychology, and Life Sciences

Abstract

The number of babies born to teenagers ranging in ages from 10 to 19 in the state of Texas during the years 1964 to 1990 is not strictly regular, but has both a systematic and random component. Herein we use the relative dispersion, the ratio of the standard deviation to the mean of a time series, to show by systematically aggregating the teen-birth data, that the correlation in the number of teen births is a modulated inverse power law. This scaling of the aggregated relative dispersion indicates the existence of long-time memory in the underlying control process and that the social process leading to teen pregnancy and having a baby are random, fractal and nonlinear. It is shown that this statistical behavior is the same as that observed in other sexual partner selection processes. We discuss the possible allometric nature of time series having such an inverse power-law character, and the implications of such memory for the properties of social control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, R. M., & May, R. M. (1988). Epidemiological parameters of HIV transmission, Nature 333, 514-517.

    Google Scholar 

  • Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal Physiology. Oxford: Oxford University Press.

    Google Scholar 

  • Blythe, S. P., & Castill-Chavez, C.(1995). Scaling of sexual activity. Nature 344, 202.

    Google Scholar 

  • Cesario, S. (1998). Influence of the economy on teen and adult birth patterns in Oklahoma 1980-1995: A time series analysis. Texas Woman' University, unpublished manuscript.

  • Dooley, K., Hamilton, P., Cherri, M., West, B. J., & Fisher, P. (1997). Chaotic behavior in society: Adolescent childbearing in Texas, 1964-1990. In R. A. Eve, S. Horsfal, and M. E. Lee (Eds.), Chaos, complexity, and sociology (pp. 243-268). Thousand Oaks: Sage.

    Google Scholar 

  • Feder, J. (1988). Fractals, New York: Plenum Press.

    Google Scholar 

  • Hamilton, P., West, B. J., Mackey, H., Cherri, M., & Fisher, P. (1994a). Evidence of nonlinear dynamics in teen births in Texas 1964-1990. in P. L. Chinn (Ed.), Advanced Methods of Inquiry (pp.160-176), Gaithersberg, MD: Aspen.

    Google Scholar 

  • Hamilton, P., West, B. J., Mackey, H., Cherri, M., & Fisher, P. (1994b). Preliminary evidence of nonlinear dynamics in births to adolescents in Texas 1964-1990. Theoretical and Applied Chaos in Nursing, 1(1), 15-22.

    Google Scholar 

  • Huxley, J. S. (1932). Problems of relative growth. New York: Dial Press.

    Google Scholar 

  • Lee, M. E. (1997). From enlightenment to chaos: toward non modern social theory. In R. A. Eve, S. Horsfal, and M. E. Lee (Eds.), Chaos, complexity, and sociology (pp. 15-29). Thousand Oaks: Sage.

    Google Scholar 

  • Lowen, S. B., & Teich, M. C. (1995). Estimation and simulation of fractal stochastic point processes. Fractals, 3, 183-210.

    Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals, form, chance and dimension, San Francisco: W.H. Freeman and Co.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco: W.H. Freeman and Co.

    Google Scholar 

  • Montroll, E. M., & West, B. J. (1987). An enriched collection of stochastic processes. In E. W. Montroll and J. Lebowitz (Eds.). Fluctuation Phenomena. 2nd Edition (pp. 61-173). Amsterdam: North-Holland.

    Google Scholar 

  • Pareto, V. (1897). Cours d'economie politique, Lausanne; (1916). Tiattato di Socilolgia Generale, 2 Vol, Firenize, Barbera.

  • Stanley, H. E., Buldyrev, S. V., Goldberger, A. L., Goldberger, Z. D., Havlin, S., Mantegna, R. N., Ossadnik, S. M., Peng, C.-K., & Simons, M. (1994). Statistical mechanics in biology: How ubiquitous are long-range correlations? Physica A, 205, 214-253.

    Google Scholar 

  • Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189, 732-734.

    Google Scholar 

  • Taylor, L. R., & Taylor, R. A. (1977). Aggregation, migration and population mechanics. Nature, 265, 415-417.

    Google Scholar 

  • Taylor, L. R., & Woiwod, I. P. (1980). Temporal stability as a density-dependent species characteristic. Journal Animal Ecology, 49, 209-218.

    Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. E. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D, 75, 190-208.

    Google Scholar 

  • van Beek, J. H. G. M., Roger, S. A., & Bassingthwaighte, J. R. (1989). Regional myocardial flow heterogeneity explanined with fractal networks. American Journal of Physiology, 257, (Heat Circulation Physiology 26): H1670-H1680.

    Google Scholar 

  • Wang, M. C., & Uhlenbeck, G. E. (1945). Theory of Brownian motion. Reviews of Modern Physics, 17, 323-348.

    Google Scholar 

  • West, B. J. (1999). Physiology, promiscuity, and prophecy at the millennium: A tale of tails. River Edge, New Jersey: World Scientific.

    Google Scholar 

  • West, B. J., & Deering, W. (1995). The lure of modern science: Fractal thinking. River Edge, New Jersey: World Scientific.

    Google Scholar 

  • West, B. J., & Griffin, L. (1998). Allometric control, human gait and inverse power laws, Fractals, 6, 101-108.

    Google Scholar 

  • West, B. J., & Grigolini, P. (in press). Fractional differences, derivatives and fractal time series. In R. Hilfer (Ed.), Applications to fractional calculus in physics. Singapore: World Scientific.

  • West, B. J., Novars, M. N., & Kavcic, V. (1996). Fractal probability density and EEG/ERP time series. In P.M. Iannoccone & M. Khokha (Eds.) Fractal geometry in biological systems (pp. 267-314). New York: CRC Press.

    Google Scholar 

  • Wilson, K. (1993). The renormalization group and critical phenomena. In G. Ekspong (Ed.), Nobel Lectures Physics 1981-1990 (pp. 102-134). River Edge, New Jersey: World Scientific.

    Google Scholar 

  • Zaslavsky, G. M., Edelman, M., & Niyazov, B. A. (1997). Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos, 7, 159-171.

    Google Scholar 

  • Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Cambridge MA: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, B.J., Hamilton, P. & West, D.J. Random Fractal Time Series and the Teen-Birth Phenomenon. Nonlinear Dynamics Psychol Life Sci 4, 87–111 (2000). https://doi.org/10.1023/A:1009520029511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009520029511

Navigation