Skip to main content
Log in

Luminescence Mechanisms for Borate Glasses: The Role of Local Structural Units

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The increasing knowledge of local order and detailed structural information on the neighboring atoms of impurity ions or radiation-induced defect states in borate glasses is a powerful argument for more detailed models leading to a better understanding of luminescence mechanisms, recombination kinetics, and other related phenomena. Examples of some previous models for the thermoluminescence quenching mechanisms for gamma-irradiated aluminoborate glasses doped with Fe are briefly revised. The Racah parameters and the ligand field intensity for a transition element ion such as Cr3+ are found to be useful parameters, sensitive to the nature of local symmetry and distortions, which can be controlled by an adequate glass composition design. The Fano antiresonances observed in the optical absorption spectra appear at the positions expected from the Tanabe–Sugano diagram. The optical absorption spectrum of barium aluminoborate glasses doped with Cr3+ and Nd3+ is merely a superposition of the respective independent absorptions. However, the fluorescence spectrum appears to be shifted, thus indicating the occurrence of an energy transfer process from Cr3+ to Nd3+ excited states, which is observed even at room temperature. Both the fluorescence and excitation spectra of glasses doped with chromium and neodymium show the Fano antiresonance effect but exhibit a Lamb shift of the valleys associated with neodymium over the emission bands of Cr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pontuschka, W.M., Oliveira, M.T., and Del Nery, S.M., Luminescence Quenching Mechanisms for γ-Irradiated Barium Aluminoborate Glasses Doped with Fe, in Borate Glasses, Crystals, and Melts, Wright, A.C., Feller, S.A., and Hannon, A.C., Eds., Sheffield: The Society of Glass Technology, 1997, pp. 392-398.

    Google Scholar 

  2. Griscom, D.L., ESR Studies of an Intrinsic Trapped-Electron Center in X-Irradiated Alkali Borate Glasses, J. Chem. Phys., 1971, vol. 55, no. 3, pp. 1113-1122.

    Google Scholar 

  3. Griscom, D.L., Taylor, P.C., Ware, D.A., and Bray, P.J., ESR Studies of Lithium Borate Glasses and Compounds γ-Irradiated at 77 K: Evidence for a New Interpretation of the Trapped-Hole Centers Associated with Boron, J. Chem. Phys., 1968, vol. 48, no. 11, pp. 5158-5173.

    Google Scholar 

  4. Mizukami, A., Isotani, S., Rabbani, S.R., and Pontuschka, W.M., Approximate Solution for Kinetic Differential Equations, Nuovo Cimento, 1993, vol. D15, no. 4, pp. 637-645.

    Google Scholar 

  5. Furtado, W.W., Tomé, T., Isotani, S., Antonini, A.R., Blak, A.R., Pontuschka, W.M., and Rabbani, S.R., Numerical Integration Method Applied to the Study of Atomic Hydrogen in Aluminoborate Glass, Anais da Academia Brasileira de Ciencias, 1989, vol. 61, no. 4, pp. 397-403.

    Google Scholar 

  6. Isotani, S., Furtado, W.W., Antonini, A.R., Blak, A.R., Pontuschka, W.M., Tomé, T., and Rabbani, S.R., Decay-Kinetics Study of Atomic Hydrogen in a-Si:(H, O, N) and Natural Beryl, Phys. Rev. B: Condens. Matter, 1990, vol. 42, no. 10, pp. 5966-5972.

    Google Scholar 

  7. Del Nery, S.M., Pontuschka, W.M., Isotani, S., and Rouse, C.G., Luminescence Quenching by Iron in Barium Aluminoborate Glasses, Phys. Rev. B: Condens. Matter, 1994, vol. 49, no. 6, pp. 3760-3765.

    Google Scholar 

  8. Pontuschka, W.M., Isotani, S., and Piccini, A., Optical and Thermal Bleaching of X-Irradiated Barium Aluminoborate Glasses, J. Am. Ceram. Soc., 1987, vol. 70, no. 1, pp. 59-64.

    Google Scholar 

  9. Krogh-Moe, J., Interpretation of the Infra-red Spectra of Boron Oxide and Alkali Borate Glasses, Phys. Chem. Glasses, 1965, vol. 6, no. 2, pp. 46-54.

    Google Scholar 

  10. Griscom, D.L., Borate Glass Structure, in Borate Glasses: Structure, Properties, and Applications, Pye, L.D., Frechette, V.D., Kreidl, N.J., Eds., New York: Plenum, 1978, pp. 11-149.

    Google Scholar 

  11. Taylor, P.C. and Griscom, D.L., Toward a Unified Interpretation of ESR Trapped-Hole Centers in Irradiated Borate Compounds and Glasses, J. Chem. Phys., 1971, vol. 55, no. 7, pp. 3610-3611.

    Google Scholar 

  12. Feigl, F.J., Fowler, W.B., and Yip, K.L., Oxygen Vacancy Model for the Center in SiO2, Solid State Commun., 1974, vol. 14, no. 3, pp. 220-225.

    Google Scholar 

  13. Sumi, H., Nonradiative Multiphonon Capture of Free Carriers by Deep-Level Defects in Semiconductors: Adiabatic and Nonadiabatic Limits, Phys. Rev. B: Condens. Matter, 1983, vol. 27, no. 4, pp. 2374-2386.

    Google Scholar 

  14. Del Nery, S.M., Luminescência em Vidros Aluminatos de Bário na Presenca de Processos Inibidores (in Portuguese) [Luminescence of Aluminoborate Glasses in the Presence of Inhibiting Processes (Engl. transl.)], Doctoral Thesis, São Paulo: Instituto de Física da Universidade de São Paulo, 1990.

    Google Scholar 

  15. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford (UK): Clarendon, 1979.

    Google Scholar 

  16. Fano, U., Effects of Configuration Interaction on Intensities and Phase Shifts, Phys. Rev., 1961, vol. 124, no. 6, pp. 1866-1878.

    Google Scholar 

  17. Fano, U. and Cooper, J.W., Line Profiles in the Far UV Absorption Spectra of the Rare Gases, Phys. Rev., 1965, vol. 137, no. 5A, pp. A1364-A1379.

    Google Scholar 

  18. Sturge, M.D. and Guggenheim, H.J., Antiresonance in the Optical Spectra of Transition-Metal Ions in Crystals, Phys. Rev. B: Solid State, 1970, vol. 2, no. 7, pp. 2459-2471.

    Google Scholar 

  19. Lempicki, A., Andrews, L., Nettel, S.J., and McCollum, B.C., Spectroscopy of Cr3+ in Glasses: Fano Antiresonances and Vibronic “Lamb-Shift, ” Phys. Rev. Lett., 1980, vol. 44, no. 18, pp. 1234-1236.

    Google Scholar 

  20. Andrews, L.J., Lempicki, A., and McCollum, B.C., Spectroscopy and Photokinetics of Chromium(III) in Glass, J. Chem. Phys., 1981, vol. 74, no. 10, pp. 5526-5538.

    Google Scholar 

  21. Strek, W., Lukowiak, E., and Jezowska-Trzebiatowska, B., Observation of Antiresonances in Fluorescence Spectra of Cr+3 and Nd+3 Doped Glasses, Z. Naturforsch., A: Phys. Sci., 1983, vol. 38, no. 9, pp. 587-588.

    Google Scholar 

  22. Vergara, I., Camarillo, E., Sanz-Garcia, J., Garcia Solé, J., and Jacque, F., Solid State Commun., 1992, vol. 82, no. 9, pp. 733-737.

    Google Scholar 

  23. Tanabe, Y. and Sugano, S., On the Absorption Spectra of Complex Ions: I and II, J. Phys. Soc. Jpn., 1954, vol. 9, no. 8, pp. 753-779.

    Google Scholar 

  24. Rasheed, F., O'Donnel, K.P., Henderson, B., and Hollist, D.B., Disorder and the Optical Spectroscopy of Cr3+-Doped Glasses: I. Silicate Glasses, J. Phys.: Condens. Matter, 1991, vol. 3, no. 12, pp. 1915-1930.

    Google Scholar 

  25. Karapetyan, G.O., Lunter, S.G., and Yudin, D.M., Luminescence of Chromium-Activated Glasses, Opt. Spectrosc., 1963, vol. 14, no. 5, pp. 370-372.

    Google Scholar 

  26. Yamaga, M., Henderson, B., and O'Donnel, K.P., Tunneling between 4T2 and 2E States of Cr3+ Ions with Small Energy Separation-The Case of GSGG, J. Phys.: Condens. Matter, 1989, vol. 1, no. 46, pp. 9175-9182.

    Google Scholar 

  27. Ymaga, M., Henderson, B., O'Donnel, K.P., Trager-Cowan, C., and Marshall, A., Temperature Dependence of the Life Time of Cr3+ Luminescence in Garnet Crystals, Appl. Phys. B, 1990, vol. 50, no. 5, pp. 425-431.

    Google Scholar 

  28. Fuxi, G. and Huimin, L., Spectroscopy of Transition Metal Ions in Inorganic Glasses, J. Non-Cryst. Solids, 1986, vol. 80, pp. 20-33.

    Google Scholar 

  29. Li J., Li, B., Wen, J.K., and Wang, H.F., Sensitization of Nd3+ Luminescence by Cr3+ in Nd: MgO: LiNbO3 Crystals, Opt. Commun., 1993, vol. 98, nos. 4-6, pp. 261-264.

    Google Scholar 

  30. Lamb, W., Fine Structure of the Hydrogen Atom: III, Phys. Rev., 1952, vol. 85, no. 2, pp. 259-276.

    Google Scholar 

  31. Landry, L.J., Fournier, F.T., and Young, C.G., Electron Paramagnetic Resonance and Optical Absorption Studies of Cr3+ in a Phosphate Glass, J. Chem. Phys., 1967. vol. 46, no. 4, pp. 1285-1290.

    Google Scholar 

  32. O'Reilly, D.E. and McIver, D.S., Electron Paramagnetic Resonance Absorption of Chromia-Alumina Catalysts, J. Phys. Chem., 1962, vol. 66, no. 1, pp. 276-281.

    Google Scholar 

  33. Iwamoto, N. and Makino, Y., State of the Chromium Ion in Soda Silicate Glasses under Various Oxygen Pressures, J. Non-Cryst. Solids, 1980, vol. 41, pp. 257-266.

    Google Scholar 

  34. Griscom, D.L., Electron Spin Resonance in Glasses, J. Non-Cryst. Solids, 1980, vol. 40, pp. 211-272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontuschka, W.M., Kanashiro, L.S. & Courrol, L.C. Luminescence Mechanisms for Borate Glasses: The Role of Local Structural Units. Glass Physics and Chemistry 27, 37–47 (2001). https://doi.org/10.1023/A:1009507803955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009507803955

Keywords

Navigation