Skip to main content
Log in

Mathematical Models and Methods of the Mechanics of Stochastic Composites

  • Published:
International Applied Mechanics Aims and scope

Abstract

The basic approaches used in mathematical models and general methods for solution of the equations of the mechanics of stochastic composites are generalized. They can be reduced to the stochastic equations of the theory of elasticity of a structurally inhomogeneous medium, to the equations of the theory of effective elastic moduli, to the equations of the theory of elastic mixtures, or to more general equations of the fourth order. The solution of the stochastic equations of the elastic theory for an arbitrary domain involves substantial mathematical difficulties and may be implemented only rather approximately. The construction of the equations of the theory of effective moduli is associated with the problem on the effective moduli of a stochastically inhomogeneous medium, which can be solved by the perturbation method, by the method of moments, or by the method of conditional moments. The latter method is most appropriate. It permits one to determine the effective moduli in a two-point approximation and nonlinear deformation properties. In the structure of equations, the theory of elastic mixtures is more general than the theory of effective moduli; however, since the state equations have not been strictly substantiated and the constants have not been correctly determined, theoretically or experimentally, this theory cannot be used for systematic designing composite structures. A new model of the nonuniform deformation of composites is more promising. It is constructed by performing strict mathematical transformations and averaging the output stochastic equations, all the constants being determined. In the zero approximation, the equations of the theory of effective moduli follow from this model, and, in the first approximation, fourth-order equations, which are more general than those of the theory of mixtures, follow from it

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  2. M. J. Beran, “Application of statistical theories to determine the thermal, electric, and magnetic properties of inhomogeneous materials,” in: G. P. Sendeckyi (ed.), The Mechanics of Composite Materials, Vol. 2 of the series L. J. Broutman and R. H. Krock (eds.), Composite Materials, Acad. Press, New York–London (1974).

    Google Scholar 

  3. V. V. Bolotin, Statistical Methods in Structural Mechanics [in Russian], Izd. Inostr. Lit. Stroit., Moscow (1965).

    Google Scholar 

  4. V. V. Bolotin and V. N. Moskalenko, “Determination of the elastic constants of a microinhomogeneous medium,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 1, 66–72 (1968).

    Google Scholar 

  5. G. A. Van Fo Fy, The Theory of Reinforced Materials [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  6. G. A. Vanin, The Micromechanics of Composites [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  7. S. D. Volkov and V. Ya. Dolgikh, “Structural stresses in reinforced plates,” Mekh. Polimer., No. 3, 413–420 (1967).

    Google Scholar 

  8. S. D. Volkov and V. P. Stavrov, The Statistical Mechanics of Composites [in Russian], Izd. Belorusskogo Univ., Minsk (1978).

    Google Scholar 

  9. M. I. Gai, L. I. Manevich, and V. G. Oshmyan, “Percolation effects in mechanical systems,” Dokl. Akad. Nauk SSSR, 276, No. 6, 1389–1391 (1984).

    Google Scholar 

  10. V. T. Golovchan, Physicomechanical Anisotropy of Composites [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  11. V. T. Golovchan, A. N. Guz', Yu. V. Kokhanenko, and V. I. Kushch, The Statics of Materials, Vol. 1 of the 12-volume series The Mechanics of Composites [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  12. A. N. Guz', “The theory of composites with initial stresses,” in: The Mechanics of Deformable Bodies and Structures [in Russian], Nauka, Moscow (1975), pp. 140–148.

    Google Scholar 

  13. A. N. Guz', “Determination of the reduced elastic constants of laminated composite materials with initial stresses,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 216–219 (1975).

    Google Scholar 

  14. W. D. Kingery, Property Measurements at High Temperatures. Factors Affecting and Methods of Measuring Material Properties at Temperatures above 1400 °C (2500 °F), Wiley, New York, Chapman and Hall, London (1960).

    Google Scholar 

  15. M. A. Krivoglaz and A. S. Cherevko, “The elastic moduli of a solid mixture,” Fiz. Metal. Metalloved., No. 2, 161–165 (1959).

    Google Scholar 

  16. R. M. Christensen, Introduction to the Mechanics of Composites [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  17. I. M. Lifshits and L. N. Rozentsveig, “The theory of the elastic properties of polycrystals,” Zh. Eksp. Teor. Fiz., No. 11, 967–980 (1946).

    Google Scholar 

  18. V. A. Lomakin, “The deformation of microinhomogeneous elastic bodies,” Prikl. Mat. Mekh., No. 5, 888–893 (1965).

    Google Scholar 

  19. V. A. Lomakin, “Influence of microheterogeneities in the structure of materials on their mechanical properties,” in: Reliability Problems in Structural Mechanics [in Russian], Vilnius (1968), pp. 107–112.

  20. V. A. Lomakin, Statistical Problems of the Mechanics of Deformable Solids [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  21. A. K. Malmeister, V. P. Tamuzh, and T. A. Teters, Resistance of Polymeric and Composite Materials [in Russian], Zinatne, Riga (1980).

    Google Scholar 

  22. R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  23. W. Nowacki, The Theory of Elasticity [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  24. N. J. Pagano, “The exact moduli of anisotropic laminated composites,” in: G. P. Sendeckyi (ed.), The Mechanics of Composite Materials, Vol. 2 of the series L. J. Broutman and R. H. Krock (eds.), Composite Materials, Acad. Press, New York–London (1974).

    Google Scholar 

  25. V. S. Pugachev, Introduction to Probability Theory [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  26. Kh. A. Rakhmatulin, “Fundamentals of the gas dynamics of interpenetrating motions of compressed media,” Prikl. Mat. Mekh., 20, No. 2, 184–195 (1956).

    Google Scholar 

  27. Kh. A. Rakhmatulin, Ya. U. Saatov, I. G. Filippov, and T. U. Artykov, Waves in Two-Component Media [in Russian], FAN, Tashkent (1974).

    Google Scholar 

  28. Ya. Ya. Rushchitskii, “Determination of the physical constants of the theory of elastic mixtures using experimental dispersion curves,” Prikl. Mekh., 15, No. 6, 26–32 (1979).

    Google Scholar 

  29. Ya. Ya. Rushchitskii, Elements of the Theory of Mixtures [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  30. G. N. Savin and L. P. Khoroshun, “On the elastic constants of stochastically reinforced materials,” in: Continuum Mechanics and Related Analysis Problems [in Russian], Nauka, Moscow (1972), pp. 437–444.

    Google Scholar 

  31. G. P. Sendeckyi, “The elastic properties of composites,” in: G. P. Sendeckyi (ed.), The Mechanics of Composite Materials, Vol. 2 of the series L. J. Broutman and R. H. Krock (eds.), Composite Materials, Acad. Press, New York–London (1974).

    Google Scholar 

  32. V. P. Tamuzh and V. S. Kuksenko, The Fracture Micromechanics of Polymeric Materials [in Russian], Zinatne, Riga (1978).

    Google Scholar 

  33. I. G. Filippov, “The dynamic theory of relative flows of multicomponent media,” Prikl. Mekh., 7, No. 10, 92–99 (1971).

    Google Scholar 

  34. A. G. Fokin and T. D. Shermergor, “Calculation of the effective elastic moduli of composites with allowance for many-particle interactions,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 1, 51–57 (1969).

    Google Scholar 

  35. A. G. Fokin and T. D. Shermergor, “The elastic moduli of texturized materials,” Inzh. Zh. Mekh. Tverd. Tela, No. 1, 129–133 (1967).

    Google Scholar 

  36. A. G. Fokin and T. D. Shermergor, “The elastic and rheological characteristics of fibrous composites, “ Izv. Akad. Nauk SSR, Mekh. Tverd. Tela, No. 6, 123–129 (1973).

    Google Scholar 

  37. L. P. Khoroshun, “Stress–strain dependences in laminated media,” Prikl. Mekh., 2, No. 2, 14–19 (1966).

    Google Scholar 

  38. L. P. Khoroshun, “Some issues of the correlation theory of structurally inhomogeneous elastic bodies,” Mekh. Polimer., No. 3, 365-371 (1966).

    Google Scholar 

  39. L. P. Khoroshun, “The thermoelastic properties of stochastically reinforced media,” Prikl. Mekh., 2, No. 8, 99–106 (1966).

    Google Scholar 

  40. L. P. Khoroshun, “The theory of isotropic deformation of elastic bodies with random inhomogeneities,” Prikl. Mekh., 3, No. 9, 12–19 (1967).

    Google Scholar 

  41. L. P. Khoroshun, “The statistical theory of deformation of unidirectional fibrous materials,” Prikl. Mekh., 4, No. 7, 8–15 (1968).

    Google Scholar 

  42. L. P. Khoroshun, “The statistical theory of deformation and strength of porous bodies,” in: Reliability Problems in Structural Mechanics [in Russian], Vilnius (1968), pp. 122–127.

  43. L. P. Khoroshun, “The elastic properties of materials reinforced with unidirectional short fibers,” Prikl. Mekh., 8, No. 12, 86–92 (1972).

    Google Scholar 

  44. L. P. Khoroshun, “Prediction of the thermoelastic properties of materials strengthened with unidirectional discrete fibers,” Prikl. Mekh., 10, No. 12, 23–30 (1974).

    Google Scholar 

  45. L. P. Khoroshun, “The theory of thermal conduction of biphase solids,” Prikl. Mekh., 12, No. 7, 24–32 (1976).

    Google Scholar 

  46. L. P. Khoroshun, “The theory of saturated porous media,” Prikl. Mekh., 12, No. 12, 35–41 (1976).

    Google Scholar 

  47. L. P. Khoroshun, “The theory of interpenetrating elastic mixtures,” Prikl. Mekh., 13, No. 10, 124–132 (1977).

    Google Scholar 

  48. L. P. Khoroshun, “Methods of the theory of random functions in problems on the macroscopic properties of microinhomogeneous media,” Prikl. Mekh., 14, No. 2, 3–17 (1978).

    Google Scholar 

  49. L. P. Khoroshun, “Determination of the interpenetration coefficient for biphase elastic bodies,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 541–544 (1979).

    Google Scholar 

  50. L. P. Khoroshun, “The generalized theory of elastic mixtures,” Prikl. Mekh., 16, No. 4, 20–28 (1980).

    Google Scholar 

  51. L. P. Khoroshun, “The force of interphase interaction in the theory of elastic mixtures,” Prikl. Mekh., 18, No. 5, 23–29 (1982).

    Google Scholar 

  52. L. P. Khoroshun, “The Helmholtz theorem in the theory of elastic mixtures,” Prikl. Mekh., 20, No. 7, 115–118 (1984).

    Google Scholar 

  53. L. P. Khoroshun, “Refined models of deformation of composites,” Mekh. Kompos. Mater., No. 5, 798–804 (1984).

    Google Scholar 

  54. L. P. Khoroshun, “The concept of a mixture in constructing the theory of laminated plates and shells,” Prikl. Mekh., 21, No. 4, 110–118 (1985).

    Google Scholar 

  55. L. P. Khoroshun, “The method of conditional moments in the mechanics of composites,” Prikl. Mekh., 23, No. 10, 100–108 (1987).

    Google Scholar 

  56. L. P. Khoroshun, “Fundamentals of the thermomechanics of saturated porous media,” Prikl. Mekh., 24, No. 4, 3–13 (1988).

    Google Scholar 

  57. L. P. Khoroshun, “A new mathematical model of the nonuniform deformation of composites,” Mekh. Kompos. Mater., 31, No. 3, 310–318 (1995).

    Google Scholar 

  58. L. P. Khoroshun and Yu. A. Vetsalo, “The theory of effective properties of ideally plastic composites,” Prikl. Mekh., 23, No. 1, 86–90 (1987).

    Google Scholar 

  59. L. P. Khoroshun, V. P. Georgievskii, and E. N. Shikula, “Prediction of the nonlinear deformation properties of metal-composites,” Prikl. Mekh., 25, No. 9, 45–51 (1989).

    Google Scholar 

  60. L. P. Khoroshun and P. V. Leshchenko, “The theory of effective properties of piezoelectric composites,” Mekh. Kompos. Mater., No. 3, 419–425 (1986).

    Google Scholar 

  61. L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “Prediction of the thermoelastic properties of laminated and fibrous composites with orthotropic components,” Prikl. Mekh., 24, No. 3, 15–22 (1988).

    Google Scholar 

  62. L. P. Khoroshun, P. V. Leshchenko, and L. V. Nazarenko, “The effective thermoelastic constants of discrete-fibrous composites with anisotropic components,” Prikl. Mekh., 24, No. 10, 21–28 (1988).

    Google Scholar 

  63. L. P. Khoroshun and P. V. Leshchenko, “The effective electroelastic properties of polycrystals,” Prikl. Mekh., 30, No. 4, 74–81 (1994).

    Google Scholar 

  64. L. P. Khoroshun, B. P. Maslov, and P. G. Shishkin, “The reduced thermoelastic characteristics of a plate with inclusions,” Prikl. Mekh., 12, No. 6, 34–40 (1976).

    Google Scholar 

  65. L. P. Khoroshun and B. P. Maslov, “The effective elastic moduli for bodies weakened by oriented cracks,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 924–927 (1976).

    Google Scholar 

  66. L. P. Khoroshun and B. P. Maslov, “The effective characteristics of materials spatially reinforced by short fibers,” Mekh. Kompos. Mater., No. 1, 3–9 (1979).

    Google Scholar 

  67. L. P. Khoroshun and B. P. Maslov, “Fundamentals of the theory of predicting the electromechanical properties of inhomogeneous piezoelectric materials,” Prikl. Mekh., 15, No. 8, 3–7 (1979).

    Google Scholar 

  68. L. P. Khoroshun, B. P. Maslov, E. N. Shikula, and L. V. Nazarenko, The Statistical Mechanics and Effective Properties of Materials [in Russian], Vol. 3 of the 12-volume series The Mechanics of Composites, Naukova Dumka, Kiev (1993).

    Google Scholar 

  69. L. P. Khoroshun, A. Kh. Melikbekyan, and V. M. Pinchuk, “Prediction of the properties of disoriented fibrous composites,” Prikl. Mekh., 12, No. 12, 13–19 (1976).

    Google Scholar 

  70. L. P. Khoroshun, A. Kh. Melikbekyan, and P. G. Shishkin, “The thermoelastic constants of fiberglass of oblique-angled winding,” Prikl. Mekh., 15, No. 1, 13–18 (1979).

    Google Scholar 

  71. L. P. Khoroshun and L. V. Nazarenko, “The thermoelasticity of orthotropic composites with ellipsoidal inclusions,” Prikl. Mekh., 26, No. 9, 3–10 (1990).

    Google Scholar 

  72. L. P. Khoroshun and Yu. N. Podil'chuk, “Representation of the solutions of the static equations for two-component mixtures,” Prikl. Mekh., 17, No. 4, 16–23 (1981).

    Google Scholar 

  73. L. P. Khoroshun and N. S. Soltanov, “Construction of the thermoelastic equations for a two-temperature continuum,” Prikl. Mekh., 13, No. 5, 112–115 (1977).

    Google Scholar 

  74. L. P. Khoroshun and N. S. Soltanov, “The theory of coupled thermoelasticity of two-component mixtures,” Prikl. Mekh., 17, No. 6, 21–28 (1981).

    Google Scholar 

  75. L. P. Khoroshun and N. S. Soltanov, “The thermostressed state of a two-temperature half-space with periodically varied surface temperature,” Prikl. Mekh., 1, No. 11, 30–34 (1982).

    Google Scholar 

  76. L. P. Khoroshun and N. S. Soltanov, The Thermoelasticity of Two-Component Mixtures [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  77. L. P. Khoroshun and V. Z. Tydnyuk, “The dynamic problem for biphase elastic bodies,” Prikl. Mekh., 15, No. 2, 35–40 (1979).

    Google Scholar 

  78. L. P. Khoroshun and S. N. Shevchenko, “The efficiency of reinforcement with discrete unidirectional fibers,” Prikl. Mekh., 11, No. 9, 104–108 (1975).

    Google Scholar 

  79. L. P. Khoroshun and E. N. Shikula, “The thermoelastic properties of spatially reinforced materials,” Prikl. Mekh., 27, No. 1, 15–24 (1991).

    Google Scholar 

  80. L. P. Khoroshun and E. N. Shikula, “The nonlinear deformation properties of granular metal-composites,” Prikl. Mekh., 27, No. 5, 32–37 (1991).

    Google Scholar 

  81. L. P. Khoroshun and A. S. Shcherbakov, The Strength and Deformability of Gypsum Fiber Concrete [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  82. T. D. Shermergor, The Theory of Elasticity of Microinhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  83. V. I. Shklovskii and A. L. Éfros, “The flow theory and conductivity of strongly inhomogeneous media,” Usp. Fiz. Nauk, 117, No. 3, 401–437 (1975).

    Google Scholar 

  84. N. A. Shul'ga, Fundamentals of the Mechanics of Laminated Media with a Periodic Structure [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  85. A. M. Yaglom, “Introduction to the theory of stationary random functions,” Usp. Mat. Nauk, 7, No. 5, 3–168 (1952).

    Google Scholar 

  86. R. J. Atkin and R. E. Crain, “Continuum theory of mixtures: basic and historical development,” Quart. J. Mech. Appl. Math., 29, No. 2, 209–244 (1976).

    Google Scholar 

  87. A. Betford and M. Stern, “On wave propagation in fiber-reinforced materials,” Trans. ASME, J. Appl. Mech., 37, No. 4, 1190–1192 (1970).

    Google Scholar 

  88. A. Bedford and M. Stern, “Toward a diffusing continuum theory of composite materials,” Trans. ASME, J. Appl. Mech., 8, No. 1, 8–14 (1971).

    Google Scholar 

  89. A. Bedford and M. Stern, “A multi-continuum theory for composite elastic materials,” Acta Mech., 14, No. 1, 85–102 (1972).

    Google Scholar 

  90. A. Bedford and D. S. Drumheller, “On a generalized effective stiffness theory,” Trans. ASME, J. Appl. Mech., 41, No. 1, 305–307 (1974).

    Google Scholar 

  91. A. Bedford, D. S. Drumheller, and H. J. Sutherland, “On modeling the dynamics of composite materials,” in: S. Nemat-Nasser (ed.), Mechanics Today, No. 3, 1–54 (1976).

  92. M. J. Beran, Statistical Continuum Theories, Interscience Publishers, New York (1968).

    Google Scholar 

  93. M. J. Beran and J. Molyneux, “Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media,” Quart. Appl. Math., 24, No. 2, 107–118 (1966).

    Google Scholar 

  94. B. Budiansky, “On the elastic moduli of some heterogeneous materials,” J. Mech. Phys. Solids, 13, No. 4, 223–227 (1965).

    Google Scholar 

  95. D. S. Drumheller and A. Bedford, “On a continuum theory for a laminated medium,” Trans. ASME, J. Appl. Mech., 40, No. 2, 527–532 (1973).

    Google Scholar 

  96. A. E. Green and T. R. Steel, “Constitutive equations for interacting continua,” Int. J. Eng. Sci., 4, No. 4, 483–500 (1966).

    Google Scholar 

  97. Z. Hashin, “Theory of mechanical behavior of heterogeneous media,” Appl. Mech. Revs., 17, No. 1, 1–10 (1964).

    Google Scholar 

  98. Z. Hashin and S. Shtrikman, “On some variational principles in anisotropic and nonhomogeneous elasticity,” J. Mech. Phys. Solids, 10, No. 4, 335–342 (1962).

    Google Scholar 

  99. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Solids, 11, No. 2, 127–135 (1963).

    Google Scholar 

  100. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, No. 4, 213–222 (1965).

    Google Scholar 

  101. R. Hill, “Interfacial operators in the mechanics of composite media,” J. Mech. Phys. Solids, 31, No. 4, 347–357 (1983).

    Google Scholar 

  102. M. Hori and F. Jonesawa, “Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials,” J. Math. Phys., 16, No. 9, 1772–1775 (1975).

    Google Scholar 

  103. O. Ishal and L. Cohen, “Elastic properties of filled and porous epoxy composites,” Int. J. Mech. Sci., 19, 539–546 (1967).

    Google Scholar 

  104. L. P. Khoroshun and E. N. Shikula, “Nonlinear straining of porous composite materials,” Int. Appl. Mech., 30, No. 6, 983–988 (1994).

    Google Scholar 

  105. L. P. Khoroshun, “Principles of the micromechanics of material damage. 1. Short-term damage,” Int. Appl. Mech., 34, No. 4, 1035–1041 (1998).

    Google Scholar 

  106. L. P. Khoroshun and E. N. Shikula, “Influence of the spread of the strength of components on the deformation of a laminar composite with microfailures,” Int. Appl. Mech., 33, No. 3, 679–684 (1997).

    Google Scholar 

  107. L. P. Khoroshun and E. N. Shikula, “Effect of the spread of strength characteristics of the binder on the deformation of laminar-fibrous composite materials,” Int. Appl. Mech., 33, No. 7, 39–45 (1997).

    Google Scholar 

  108. E. Kroner, “Elastic moduli of perfectly disordered composite material,” J. Mech. and Phys. Solids, 15, No. 5, 319–324 (1967).

    Google Scholar 

  109. J. J. McCoy, “Macroscopic response of continua with random microstructures,” in: Mechanics Today, Vol. 6, Pergamon Press Inc., (1981), pp. 1–40.

    Google Scholar 

  110. H. D. McNiven and Y. Mengi, “A mathematical model for the linear dynamic behavior of two-phase periodic materials,” Int. J. Solids Struct., 15, No. 4, 271–280 (1979).

    Google Scholar 

  111. H. D. McNiven and Y. Mengi, “A mixture theory for elastic laminated composites,” Int. J. Solids Struct., 15, No. 4, 281–302 (1979).

    Google Scholar 

  112. A. N. Nayfeh and G. A. Curtman, “A continuum approach to the propagation of shear waves in laminated wave guides,” Trans ASME, J. Appl. Mech., 4, No. 1, 106–110 (1974).

    Google Scholar 

  113. A. N. Nayfeh and E. A. Nassar, “A simulation of the influence of bonding materials on the dynamic behavior of laminated composites,” Trans. ASME, J. Appl. Mech., 45, No. 10, 822–828 (1978).

    Google Scholar 

  114. R. W. Ogden, “On the overall moduli of nonlinear elastic composite materials,” J. Mech. Phys. Solids, 22, No. 6, 541–554 (1974).

    Google Scholar 

  115. A. Reuss, “Berechnung der Fliessgreze von Mischkristallen auf Grund der Plastizitats-bedingung für Einkristalle,” Z. Angew. Math. Mech., 9, No. 1, 49–58 (1929).

    Google Scholar 

  116. T. R. Steel, “Applications of a theory of interacting continua,” Quart. J. Mech. Appl. Math., 20, No. 1, 57–72 (1967).

    Google Scholar 

  117. T. R. Steel, “Determination of the constitutive coefficients for a mixture of two solids,” Int. J. Solids Struct., 4, No. 12, 1149–1160 (1968).

    Google Scholar 

  118. M. Stern and A. Bedford, “Wave propagation in elastic laminates using a multicontmuum theory,” Acta Mech., 15, No. 1, 21–38 (1972).

    Google Scholar 

  119. C. T. Sun, J. D. Achenbach, and G. Herrmann, “Continuum theory for a laminated medium,” Trans. ASME, J. Appl. Mech., 35, No. 3, 467–475 (1968).

    Google Scholar 

  120. H. J. Sutherland, “Dispersion of acoustic waves by an aluminia-epoxy mixture,” J. Compos. Mat., 13, No. 1, 35–47 (1979).

    Google Scholar 

  121. T. R. Tiersten and M. Jahanmir, “A theory of composites modeled as interpenetrating solid continuum,” Arch. Ration. Mech. Anal., 54, No. 2, 153–163 (1977).

    Google Scholar 

  122. W. Voight, Lehrbuch der Kristallphysik, Teubner, Berlin (1928).

    Google Scholar 

  123. L. J. Walpole, “On bounds for the overall elastic moduli of inhomogeneous systems. I,” J. Mech. Phys. Solids, 14, No. 3, 151–162 (1966).

    Google Scholar 

  124. L. J. Walpole, “On bounds for the overall elastic moduli of inhomogeneous systems. II,” J. Mech. Phys. Solids, 14, No. 5, 289–301 (1966).

    Google Scholar 

  125. J. R. Willis, “The overall elastic response of composite materials,” Trans. ASME, Ser. E, 50, No. 46, 1202–1209 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoroshun, L.P. Mathematical Models and Methods of the Mechanics of Stochastic Composites. International Applied Mechanics 36, 1284–1316 (2000). https://doi.org/10.1023/A:1009482032355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009482032355

Keywords

Navigation