Skip to main content
Log in

Models and Methods of Finite-Dimensional Variational Inequalities

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

Algorithms for solving finite-dimensional inequalities are studied. The emphasis is on numerical methods based on the optimization approach. Examples of economic equilibrium models that assist in solving variational inequalities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. T. Harker and J. S. Pang, “Finite-dimensional variational inequality and nonlinear complementary problems: a survey of theory, algorithms, and applications,” Math. Progr., 48, No. 2, 161-220 (1990).

    Google Scholar 

  2. A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Academic, Norwell (1993).

    Google Scholar 

  3. Ya. M. Bakushinskii and B. T. Polyak, “Solution of variational inequalities,” Dokl. Akad. Nauk SSSR, No. 5, 1038-1041 (1974).

  4. J. Ortega and W. Rheynboldt, Iterative Solution of Nonlinear Systems in Several Variables [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  5. M. M. Vainberg, Variational Method and Method of Monotone Operators in Nonlinear Equation Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  6. B. N. Pshenichnyi, Necessary Conditions of Extremum [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  7. M. F. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  8. K. G. Murty, Linear Complementarity Problems, Linear and Nonlinear Programming, Heldermann, Berlin (1988).

    Google Scholar 

  9. Jia Hao Wu, M. Florian, and P. Marcotte, “A general descent framework for the monotone variational inequality problem,” Math. Progr., 61, No. 3, 281-300 (1993).

    Google Scholar 

  10. S. Dafermos, “Traffic equilibria and variational inequalities,” Transport Sci., 14, 42-54 (1980).

    Google Scholar 

  11. J. H. Hammond, Solving Asymmetric Variational Inequality Problems and Systems of Equations with Generalized Nonlinear Programming Algorithms, Ph.D. dissertation, Department of Mathematics, M.I.T., Cambridge, MA (1984).

    Google Scholar 

  12. N. H. Josephy, Quasi-Newton Methods for Generalized Equations, Tech. Sum. Rep., No. 1977, Mathematics Research Center, University of Wisconsin, Madison, WI (1979).

    Google Scholar 

  13. N. H. Josephy, Newton Method for General Equations, Tech. Rep. No. 1965, Mathematics Research Center, University of Wisconsin, Madison, WI (1979).

    Google Scholar 

  14. B. H. Ahn, “A Gauss-Seidel iteration method for nonlinear variational problems over rectangles,” Oper. Res. Letters, 1, 117-120 (1982).

    Google Scholar 

  15. A. B. Bakushinskii, “Methods of solution of variational inequalities based on the iteration regularization principle,” Zh. Vychisl. Mat. Mat. Fiz., 17, No. 6, 1350-1362 (1977).

    Google Scholar 

  16. P. Marcotte and J. Dussalt, “A note on a globally convergent Newton method for solving monotone variational inequalities,” Oper. Res. Letters, 6, 35-42 (1987).

    Google Scholar 

  17. K. Taji, M. Fukushima, and T. Ibaraki, “A globally convergent Newton method for solving strongly monotone variational inequalities,” Math. Progr., 58, No. 3, 369-383 (1993).

    Google Scholar 

  18. G. M. Korpelevich, “Extragradient method for finding saddle points and other problems,” Ekon. Mat. Methody, 12, No. 4, 747-756 (1976).

    Google Scholar 

  19. E. N. Khobotov, “Modification of the extragradient method for solving variational inequalities, Zh. Vychisl. Mat. Mat. Fiz., 27, No. 10, 1462-1473 (1987).

    Google Scholar 

  20. A. B. Bakushinskii and A. V. Goncharskii, Ill-Posed Problems. Numerical Methods and Applications [in Russian], Izd. Moskov. Univ., Moscow (1989).

    Google Scholar 

  21. R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Cont. Optimiz., 14, 877-898 (1976).

    Google Scholar 

  22. B. T. Polyak, Introduction to Optimization [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  23. F. P. Vasilyev, Numerical Methods for Solving Extremum Problems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  24. M. Fukushima, “A relaxed projection method for variational inequalities,” Math. Progr., 35, No. 1, 58-70 (1986).

    Google Scholar 

  25. V. M. Panin, “One approach to the solution of the constrained problem of search for saddle points,” in: Theory and Computing Problems of Optimization, Sb. Nauchn. Tr., Inst. Kibern. im. V. M. Glushkova, Kiev (1993), pp. 4-9.

    Google Scholar 

  26. V. M. Panin and V. M. Aleksandrova, “On one approach to solution of operational inequalities,” Kibern. Vychisl. Tekh., No. 105, 43-50 (1995).

  27. V. M. Panin and V. M. Aleksandrova, “Regularized method for solving variational inequalities with a monotone operator on a polyhedron,” Kibern. Sist. Anal., No. 5, 97-105 (1996).

  28. B. N. Pshenichnyi and M. U. Kalzhanov, “A method for solving variational inequalities,” Kibern. Sist. Anal., No. 6, 48-55 (1992).

    Google Scholar 

  29. V. M. Panin and V. M. Aleksandrova, “Convergence of the solution method for variational inequalities,” Kibern. Sist. Anal., No. 3, 176-180 (1994).

  30. G. S. Pang, “A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems,” Math. Progr., 51, No. 1, 101-131 (1991).

    Google Scholar 

  31. B. Xiao and P. T. Harker, “A nonsmooth Newton method for variational inequalities, Part 1: Theory,” Math. Progr., 65, No. 2, 151-194 (1994).

    Google Scholar 

  32. V. M. Panin and V. M. Aleksandrova, “Nonlocal quasi-Newton method for solving convex variational inequalities,” Kibern. Sist. Anal., No. 6, 78-92 (1994).

    Google Scholar 

  33. V. M. Panin and V. V. Skopetskii, “The quasi-Newtonian method for solution of convex variational inequalities with descent decomposition,” Kibern. Sist. Anal., No. 4, 90-105 (1999).

  34. V. M. Panin, “One approach to the nonlocal method of Newton type for convex variational inequalities,” in: Proc. Intern. Conf. on Problems of Optimization of Computations [in Ukrainian], Inst. Kibern. im. V. M. Glushkova NAN Ukrainy, Kiev (1997), pp. 253-257.

    Google Scholar 

  35. D. Bertsekans, Constrained Optimization and Methods of Lagrangian Multipliers [Russian translation], Radio i Svyaz', Moscow (1987).

    Google Scholar 

  36. Yu. M. Danilin, V. M. Panin, and I. A. Shubenkova, “Solution of convex variational inequalities in finite-dimensional spaces,” in: Modern Information Technologies and Systems Analysis-a way toward an Information Society. Collection of Papers [in Ukrainian], Institute of Applied Systems Analysis of the National Academy of Sciences of Ukraine and the Ministry of Education of Ukraine, Kiev (1998), pp. 77-84.

    Google Scholar 

  37. Yu. M. Danilin and I. A. Shubenkova, “Solution of variational inequalities in finite-dimensional spaces,” in: Proc. Intern. Conf. on Problems of Optimization of Computations [in Ukrainian], Inst. Kibern. im. V. M. Glushkova NAN Ukrainy, Kiev (1997), pp. 86-89.

    Google Scholar 

  38. Yu. M. Danilin, “Sequential quadratic programming and modified Lagrange functions,” Kibern. Sist. Anal., No. 5, 51-67 (1994).

  39. B. N. Pshenichnyi and Yu. M. Danilin, Numerical Methods for Solving Extremum Problems [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  40. V. M. Aleksandrova, “Accelerated method of solution of variational inequalities,” in: Theory of Optimal Solutions [in Russian], Inst. Kibern. im. V. M. Glushkova NAN Ukrainy, Kiev (1995), pp. 8-3.

    Google Scholar 

  41. B. N. Pshenichnyi and L. A. Sobolenko, “Acceleration of convergence of the linearization method for the problem of constrained optimization,” Zh. Vychisl. Mat. Mat. Fiz., 20, No. 3, 605-614 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.M., Skopetskii, V.V. & Lavrina, T.V. Models and Methods of Finite-Dimensional Variational Inequalities. Cybernetics and Systems Analysis 36, 829–844 (2000). https://doi.org/10.1023/A:1009453225995

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009453225995

Navigation