Skip to main content
Log in

Molecular Mechanisms of Development and Differentiation of the Eye of Drosophila and Vertebrates

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The development of the eye is compared in Drosophila and vertebrates. Although the structure of the compound eye of invertebrates and of the cameral eye of vertebrates differs morphologically, there are striking similarities at the molecular level. Three groups of genes control the morphogenesis of the eye: the genes responsible for eye rudiment formation, neurogenic genes, and proneural genes. In the eye rudiments of Drosophila and vertebrates, the homologous regulatory homeobox-containing genes ey/Pax6, so/Six3, rx/Rx, and optix/Optx2 are expressed. Transcription factors encoded by these conservative genes are involved in specific interactions with DNA. Another set of homologous genes, eya/Eya and dac/DACH/Dac, is also expressed during this developmental period. These genes encode nuclear transcription factors that are devoid of DNA-binding domains but are involved in the protein–protein interactions that control gene expression. Transcriptional complexes, which are products of homeobox-containing genes and nuclear factors, control morphogenesis of the eye in Drosophila and vertebrates. A similar set of homologous regulatory and nuclear genes controls morphogenesis during formation of the ectopic eyes in Drosophila and vertebrates. Molecular biology approaches have allowed eye development to be examined at the level of developmental mechanisms. It has become evident that progress in understanding the mechanisms of eye development is due to studies carried out on Drosophila. Supporters of the idea of the polyphyletic origin of the compound and cameral eyes have noted significant differences in their structure and have failed to find distinct common features in their development. The hypothesis of the monophyletic origin of eyes has been substantiated by the results of molecular investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abouheif, E., Homology and Developmental Genes, Trends Genet., 1997, vol. 13, pp. 432-433.

    Google Scholar 

  • Albers, B., Bray, D., Lewis, J., et al., The Molecular Biology of the Cell, New York: Garland, 1994.

    Google Scholar 

  • Andreazzoli, M., Gestri, G., Angeloni, D., et al., Role of Xrx1 in Xenopus Eye and Anterior Brain Development, Development, 1999, vol. 126, pp. 2451-2460.

    Google Scholar 

  • Baker, N.E. and Sung-Yan Yu, The R8-Photoreceptor Equivalence Group in Drosophila: Fate Choice Precedes Regulated Delta Transcription and Is Independent of Notch Gene Dose, Mech. Dev., 1998, vol. 74, pp. 3-14.

    Google Scholar 

  • Barbiere, A.M., Lupo, G., Bulfone, A., et al., A Homeobox Gene, vax2, Controls the Patterning of the Eye Dorsoventral Axis, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10 729-10 734.

    Google Scholar 

  • Beebe, D.C., Homeobox Genes and Vertebrate Eye Development, Invest. Ophthalmol. Vis. Sci., 1994, vol. 35, pp. 2897-2900.

    Google Scholar 

  • Belecky-Adams, T., Tomarev, S., Li, H.S., et al., Pax6, Prox1, and Chx10 Homeobox Gene Expression Correlates with Phenotypic Fate of Retinal Precursor Cells, Invest. Ophthalmol. Vis. Sci., 1997, vol. 38, pp. 1293-1303.

    Google Scholar 

  • Bier, E., Antineural Inhibition: A Conserved Mechanism for Neural Induction, Cell, 1997, vol. 89, pp. 681-684.

    Google Scholar 

  • Bonini, N.M. and Choi, K.-W., Early Decisions in Drosophila Eye Morphogenesis, Curr. Opin. Genet. Dev., 1995, vol. 5, pp. 507-515.

    Google Scholar 

  • Bonini, N.M., Leiserson, W.N., and Benzer, S., Eyes absent Gene: Genetic Control of Cell Survival and Differentiation in the Developing Drosophila Eye, Cell, 1993, vol. 72, pp. 379-395.

    Google Scholar 

  • Bonini, N.M., Bui, O.T., Gray-Board, G.L., and Warrick, J.M., The Drosophila eyes absent Gene Directs Ectopic Eye Formation in a Pathway Conserved between Flies and Vertebrates, Development, 1997, vol. 124, pp. 4819-4826.

    Google Scholar 

  • Bovolenta, P., Mallamac, T.A., Puelles, L., and Boncinelli,?E., Expression Pattern of cSix3, a Member of the six/sine oculis Family of Transcription Factors, Mech. Dev., 1998, vol. 70, pp. 201-203.

    Google Scholar 

  • Brand, A.H. and Perrimon, N., Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes, Development, 1993, vol. 118, pp. 401-415.

    Google Scholar 

  • Casarosa, S., Andreazzoli, M., Simeone, M., and Barsacchi, G., Xrx-1, a Novel Xenopus Homeobox Gene Expressed during Eye and Pineal Gland Development, Mech. Dev., 1997, vol. 61, pp. 187-198.

    Google Scholar 

  • Caubit, X., Thangarajah, R., Theil, T., et al., Mouse Dac, a Novel Nuclear Factor with Homology to Drosophila dachshund Shows a Dynamic Expression in the Neural Crest, the Eye, the Neocortex, and the Limb Bud, Dev. Dyn., 1999, vol. 214, pp. 66-80.

    Google Scholar 

  • Cavodeassi, F., Diez del Corral, R., Campuzano, S., and Dominguez, M., Compartments and Organizing Boundaries in the Drosophila Eye: the Role of the Homeodomain Iroquois Proteins, Development, 1999, vol. 126, pp. 4933-4942.

    Google Scholar 

  • Chanut, F. and Heberlein, U., Role of Decapentaplegic in Initiation and Progression of the Morphogenetic Furrow in the Developing Drosophila Retina, Development., 1997, vol. 124, pp. 559-567.

    Google Scholar 

  • Chen, R., Amoui, M., Zhang, Z., and Mardon, G., Dachshund and Eyes Absent Proteins Form a Complex and Function Synergistically to Induce Ectopic Eye Development in Drosophila, Cell, 1997, vol. 91, pp. 893-903.

    Google Scholar 

  • Cheyette, B.N.R., Green, P.L., Martin, K., et. al., The Drosophila sine oculis Locus Encodes a Homeodomain-Containing Protein Required for the Development of the Entire Visual System, Neuron, 1994, vol. 12, pp. 977-996.

    Google Scholar 

  • Cho, K.O. and Choi, K.W., Fringe Is Essential for Mirror Symmetry and Morphogenesis in Drosophila Eye, Nature, 1998, vol. 396, pp. 272-276.

    Google Scholar 

  • Chow, R.L., Altmann, C.R., Lang, R.A., and Hemmati-Brivanlou, A., Pax6 Induces Ectopic Eyes in Vertebrate, Development, 1999, vol. 126, pp. 4213-4222.

    Google Scholar 

  • Czerny, T., Halder, G., Kloter, U., et al., twin of eyeless, a Second Pax6 Gene of Drosophila, Acts Upstream of eyeless in the Control of Eye Development, Mol. Cell., 1999, vol. 3, pp. 297-307.

    Google Scholar 

  • Dambly-Chaudiere, C. and Vervoort, M., The bHLH Genes in Neural Development, Int. J. Dev. Biol., 1998, vol. 42, pp. 269-273.

    Google Scholar 

  • Daniel, A., Dumstrei, K., Lengyel, J.A., and Hartestein, V., The Control of Cell Fate in the Embryonic Visual System by atonal, tailless and EGFR Signaling, Development, 1999, vol. 126, pp. 2945-2954.

    Google Scholar 

  • Davis, R.J., Shen, W., Heanue, T.A., and Mardon, G., Mouse Dach, a Homologue of Drosophila dachshund, Is Expressed in the Developing Retina, Brain, and Limbs, Development, Genes, Evolution, 1999, vol. 209, no. 9, pp. 526-536.

    Google Scholar 

  • Del Rio-Tsonis, K., Washabaugh, C.H., and Tsonis, P.A., Expression of pax-6 during Urodele Eye Development and Lens Regeneration, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5092-5096.

    Google Scholar 

  • Desplan, C., Eye Development: Governed by a Dictator or a Junta?, Cell, 1997, vol. 91, pp. 861-864.

    Google Scholar 

  • Dickson, B., Nuclear Factors in sevenless Signalling, Trends Genet., 1995, vol. 11, pp. 106-111.

    Google Scholar 

  • Dickson, W. and Seger, J., Eye Evolution, Science, 1996, vol. 272, pp. 467-469.

    Google Scholar 

  • Docucu, M.E., Zipursky, S.L., and Cagan, R.L., Atonal, rough and Resolution of Proneural Clusters in the developing Drosophila Retina, Development, 1996, vol. 122, pp. 4139-4147.

    Google Scholar 

  • Dominguez, M. and de Celis, J.E., A Dorsal/Ventral Boundary Established by Notch Controls Growth and Polarity in the Drosophila Eye, Nature, 1998, vol. 396, pp. 276-278.

    Google Scholar 

  • Dominguez, M. and Hafen, E., Hedgehog Directly Controls Initiation and Propagation of Retinal Differentiation in the Drosophila Eye, Genes Dev., 1997, vol. 11, pp. 3254-3264.

    Google Scholar 

  • Dorsky, R., Chang, W., Rapoport, D., and Harris, W., Regulation of Neuronal Diversity in the Xenopus Retina by Delta Signalling, Nature, 1997, vol. 385, pp. 67-70.

    Google Scholar 

  • Duncan, M.K., Kos, L., Jenkins, N.A., et al., Eyes absent: A Gene Family Found in Several Metazoan Phyla, Mammalian Genome, 1997, vol. 8, pp. 479-485.

    Google Scholar 

  • Eggert, T., Hauck, B., Hildebrandt, N., et al., Isolation of a Drosophila Homolog of the Vertebrate Homeobox Gene Rx and Its Possible Role in Brain and Eye Development, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2343-2348.

    Google Scholar 

  • Ericson, J., Rashbass, P., Schedle, A., et al., Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling, Cell, 1997, vol. 90, pp. 169-180.

    Google Scholar 

  • Freeman, M., Cell Determination Strategies in the Drosophila Eye, Development, 1997, vol. 124, pp. 261-270.

    Google Scholar 

  • Fujiwara, M., Uchida, T., Osumi-Yamashita, N., and Eto, K., Uchida Rat (rSey) a New Mutant Rat with Craniofacial Abnormalities Resembling Those of the Mouse Sey Mutant, Differentiation, 1994, vol. 57, pp. 31-38.

    Google Scholar 

  • Gehring, W., Eye Evolution, Science, 1996a, vol. 272, pp. 468-469.

    Google Scholar 

  • Gehring, W.J., The Master Control Gene for Morphogenesis and Evolution of the Eye, Genes Cells, 1996b, vol. 1, pp. 11-15.

    Google Scholar 

  • Gehring, W.J. and Ikeo, K., Pax6 Mastering Eye Morphogenesis and Eye Evolution, Trends Genet., 1999, vol. 15, pp. 371-377.

    Google Scholar 

  • Gilbert, S.F., Developmental Biology, Sunderland: Sinauer, 1994.

    Google Scholar 

  • Gilbert, S.F., Opitz, D.M., and Ruff, R.A., A New Synthesis of Evolutionary Biology asnd Developmental Biology, Ontogenez, 1997, vol. 18, pp. 325-343.

    Google Scholar 

  • Glardon, S., Callaerts, P., Halder, G., and Gehring, W.J., Conservation of Pax-6 in a Lower Chordate, the Ascidian Phallusia mammaliata, Development, 1997, vol. 124, pp. 817-825.

    Google Scholar 

  • Glaser, T., Walton, D.S., Cai, J., et al., PAX6 Gene Mutation in Aniridia, Molecular Genetics of Ocular Disorders, New York: Wiley, 1995, pp. 51-82.

    Google Scholar 

  • Greenwood, S. and Struhl, G., Progression of the Morphogenetic Furrow in the Drosophila Eye: the Roles of Hedgehog, Decapentaplegic and the Raf Pathway, Development, 1999, vol. 126, pp. 5795-5808.

    Google Scholar 

  • Grindley, J.C., Davidson, D.R., and Hill, R.E., The Role of Pax-6 in Eye and Nasal Development, Development, 1995, vol. 121, pp. 1433-1442.

    Google Scholar 

  • Hammond, K.L., Hanson, I.M., Brown, A.G., et al., Mammalian and Drosophila dachshund Genes Are Related to the Ski Pro-Oncogene and Are Expressed in Eye and Limb, Mech. Dev., 1998, vol. 74, pp. 121-131.

    Google Scholar 

  • Halder, G., Callaerts, P., and Gehring, W.J., Induction of Ectopic Eyes by Targeted Expression of the eyeless Gene in Drosophila, Science, 1995, vol. 267, pp. 1788-1792.

    Google Scholar 

  • Halder, G., Callaerts, P., Flister, S., et al., Eyeless Initiates the Expression of Both sine oculis and eyes absent during Drosophila Compound Eye Development, Development, 1998, vol. 125, pp. 2181-2191.

    Google Scholar 

  • Harris, W.A., Cellular Diversification in the Vertebrate Retina, Curr. Opin. Genet. Dev., 1997, vol. 7, pp. 651-658.

    Google Scholar 

  • Harris, W.A. and Messersmith, S.L., Two Cellular Inductions Involved in Photoreceptor Determination in the Xenopus Retina, Neuron, 1992, vol. 9, pp. 357-372.

    Google Scholar 

  • Harris, W.A. and Perron, M., Molecular Recapitulation: The Growth of the Vertebrate Retina, Int. J. Dev. Biol., 1998, vol. 42, pp. 299-304.

    Google Scholar 

  • Harrison, R.G., Correlation in the Development and Growth of the Eye Studied by Means of Heteroplastic Transplantation, Roux' Arch. Entwicklungsmech. Org., 1929, vol. 120, pp. 1-50.

    Google Scholar 

  • Hauck, B., Gehring, W.J., and Walldorf, U., Functional Analysis of an Eye Specific Enhancer of the eyeless Gene in Drosophila, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 564-569.

    Google Scholar 

  • Heanue, T.F., Reshelf, R., Davis, R.J., et al., Sinergistic Regulation of Vertebrate Muscle Development by Dach2, Eya2, and Six1, Homologues of Genes Required for Drosophila Eye Formation, Genes Dev., 2000 (in press).

  • Heberlein, U., Wolff, T., and Rubin, G.M., The TGF-beta Homolog dpp and the Segment Polarity Gene hedgehog Are Required for Propagation of a Morphogenetic Wave in the Drosophila Retina, Cell, 1993, vol. 75, pp. 913-926.

    Google Scholar 

  • Heberlein, U., Singh, C.M., Luk, A.Y., and Donohoe, T.J., Growth and Differentiation in the Drosophila Eye Coordinated by Hedgehog, Nature, 1995, vol. 373, pp. 709-711.

    Google Scholar 

  • Heberlein, U., Borod, E.R., and Chanut, F.A. Dorsoventral Paterning in the Drosophila Retina by wingless, Development, 1998, vol. 125, pp. 567-577.

    Google Scholar 

  • Hemmati-Brivanlou, A. and Melton, D., Vertebrate Embryonic Cells will Become Nerve Cells unless Told Otherwise, Cell, 1997, vol. 88, pp. 13-17.

    Google Scholar 

  • Henry, J.J. and Grainger, R.M., Early Tissue Interactions Leading to Embryonic Lens Formation in Xenopus laevis, Dev. Biol., 1990, vol. 141, pp. 149-163.

    Google Scholar 

  • Hill, R.E., Favor, J., Hogan, B.L.N., et al., Mouse Small eye Results from Mutations in a Paired-Like Homeobox-Containing Gene, Nature, 1991, vol. 354, pp. 522-525.

    Google Scholar 

  • Hirsch, N. and Harris, W.A., Xenopus Pax6 and Retinal Development, J. Neurobiol., 1997, vol. 32, pp. 45-61.

    Google Scholar 

  • Jan, Y.N. and Jan, L.Y., Neuronal Cell Fate Specification in Drosophila, Curr. Opin. Neurobiol., 1994, vol. 4, pp. 8-13.

    Google Scholar 

  • Jarman, A.P., Grell, E.H., Ackerman, L., et al., Atonal is the Proneural Gene for Drosophila Photoreceptors, Nature, 1994, vol. 369, pp. 398-400.

    Google Scholar 

  • Jarman, A.P., Sun, Y., Jan, L.Y., and Jan, Y.N., Role of the Proneural Gene, atonal, in the Formation of Drosophila Chordotonal Organs and Photoreceptor, Development, 1995, vol. 121, pp. 2019-2030.

    Google Scholar 

  • Jassoni, C.L., Walkar, M.B., and Reh, T.A., A Chicken achaete-scute Homolog (CASH-1) Is Expressed in a Temporally and Spatially Discrete Manner in the Developing Nervous System, Development, 1994, vol. 120, pp. 769-783.

    Google Scholar 

  • Jean, D., Ewan, K., and Gruss, P., Molecular Regulators Involved in Vertebrate Eye Development, Mech. Dev., 1998, vol. 76, pp. 3-18.

    Google Scholar 

  • Johns, P.R., Growth of the Adult Gold Eye. III. Increase in Retinal Cell Number, J. Comp. Neurol., 1977, vol. 176, pp. 331-342.

    Google Scholar 

  • Kanekar, S., Perron, M., Dorsky, R., et al., Xath5 Participates in a Network of HLH Genes in the Developing Xenopus Retina, Neuron, 1997, vol. 19, pp. 981-994.

    Google Scholar 

  • Kim. J., Sebring, A., Esch, J.J., et al., Integration of Positional Signals and Regulation of Wing Formation and Identity by Drosophila vestigal Gene, Nature, 1996, vol. 382, pp. 133-138.

    Google Scholar 

  • Kramer, H., Cagan, R.L., and Zipursky, S.L., Interaction of Bride of sevenless Membrane-Bound Ligand and the sevenless Tyrosine-Kinase Receptor, Nature, 1991, vol. 352, pp. 207-212.

    Google Scholar 

  • Kramer, H. and Cagan, R.L., Determination of Photoreceptor Cell Fate in the Drosophila Retina, Curr. Opin. Neurobiol., 1994, vol. 4, pp. 14-20.

    Google Scholar 

  • Kumar, J. and Moses, K., Transcription Factors in Eye Development: A Gargeous Mosaic?, Genes Dev., 1997, vol. 11, pp. 2023-2028.

    Google Scholar 

  • Lewis, W.H., Experimental Studies on the Development of the Eye in Amphibia. I. On the Origin of the Lens, Rana palustris, Am. J. Anat., 1904, vol. 3, pp. 505-536.

    Google Scholar 

  • Li, H.S., Yang, J.M., Jacobson, R.D., et al., Pax-6 Is First Expressed in a Region of Ectoderm Anterior to the Early Neural Plate: Implication for Stepwise Determination of the Lens, Dev. Biol., 1994, vol. 162, pp. 181-194.

    Google Scholar 

  • Li, H.S., Tierney, C., Wen, L., et al., A Single Morphogenetic Field Gives Rise to Two Retina Primordia under the Influence of the Prechordal Plate, Development, 1997, vol. 124, pp. 603-615.

    Google Scholar 

  • Loosli, F., Koster, R.W., Carl, N., et al., Six3, a Medaka Homologue of the Drosophila Homeobox Gene sine oculis Is Expressed in the Anterior Embryonic Shield and the Developing Eye, Mech. Dev., 1998, vol. 74, pp. 159-164.

    Google Scholar 

  • Loosli, F., Winkler, S., and Wittbrodt, J., Six3 Overexpression Initiates the Formation of Ectopic Retina, Genes Dev., 1999, vol. 13, pp. 649-654.

    Google Scholar 

  • Macdonald, R. and Wilson, S.W., Pax Proteins and Eye Development, Curr. Opin. Neurobiol., 1996, vol. 6, pp. 49-56.

    Google Scholar 

  • Macdonald, R. and Wilson, S.W., Distribution of Pax6 Protein during Eye Development Suggests Discrete Roles in Proliferative and Differentiated Visual Cells, Dev. Genes Evol., 1997, vol. 206, pp. 363-369.

    Google Scholar 

  • Mangold, O., Das Determinationsproblem. III. Das Wirbeltierauge in der Entwicklung und Regeneration, Ergeb. Biol., 1931, vol. 7, pp. 193-403.

    Google Scholar 

  • Mardon, G., Solomon, N.M., and Rubin, G.M., Dachshund Encodes a Nuclear Protein Required for Normal Eye and Leg Development in Drosophila, Development, 1994, vol. 120, pp. 3473-3486.

    Google Scholar 

  • Mathers, P.H., Grinberg, A., Mahon, K.A., and Jamrich, M., The Rx Homeobox Gene Is Essential for Vertebrate Eye Development, Nature, 1997, vol. 387, pp. 603-607.

    Google Scholar 

  • Mitashov, V.I., Cellular Sources, Regulatory Factors, and Gene Expression during Lens and Retina Regeneration in Vertebrates, Izv. Ross. Akad. Nauk, Ser. Biol., 1996, no. 3, pp. 298-318.

    Google Scholar 

  • Mizuno, M., Takabatake, T., Takahashi, T.C., and Takashima, K., Pax-6 Gene Expression in Newt Eye Development, Dev. Genes Evol., 1997, vol. 207, pp. 167-176.

    Google Scholar 

  • Niimi, T., Seimiya, M., Kloter, U., et al., Direct Regulatory Interaction of the eyeless Protein with an Eye Specific Enhancer in the sine oculis Gene during Eye Induction in Drosophila, Development, 1999, vol. 126, pp. 2253-2260.

    Google Scholar 

  • Oliver, G., Mailhos, A., Wahr, R., et al., Six3, a Murine Homologue of the sine oculis Gene, Demarcates the Most Anterior Border of the Developing Neural Plate and Is Expressed during Eye Development, Development, 1995, vol. 121, pp. 4045-4055.

    Google Scholar 

  • Oliver, G., Loosli, F., Koester, R., et al., Ectopic Lens in Fish in Response to the Murine Homeobox Gene Six3, Mech. Dev., 1996, vol. 60, pp. 233-239.

    Google Scholar 

  • Pan, D. and Rubin, G.M., Targeted Expression of teashirt Induces Ectopic Eyes in Drosophila, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15 508-15 512.

    Google Scholar 

  • Papayannopoulos, V., Tomlinson, A., Panin, V.M., et al., Dorsal-Ventral Signaling in the Drosophila Eye, Science, 1998, vol. 281, pp. 2031-2034.

    Google Scholar 

  • Perrimon, N., Creating Mosaics in Drosophila, Int. J. Dev. Biol., 1998, vol. 42, pp. 243-247.

    Google Scholar 

  • Perron, M., Kanekar, S., Vetter, M.L., and Harris, W.A., The Genetic Sequence of Retinal Development in the Ciliary Margin of the Xenopus Eye, Dev. Biol., 1998, vol. 199, pp. 185-200.

    Google Scholar 

  • Pignoni, F. and Zipursky, S.L., Induction of Drosophila Eye Development by Decapentaplegic, Development, 1997, vol. 124, pp. 271-278.

    Google Scholar 

  • Pignoni, F., Hu, B., Zavitz, K.H., et al., The Eye-Specification Proteins So and Eya Form a Complex and Regulate Multiple Steps in Drosophila Eye Development, Cell, 1997, vol. 91, pp. 881-891.

    Google Scholar 

  • Puschel, A.W., Gruss, P., and Westerfield, M., Sequence and Expression Pattern of pax-6 Are Highly Conserved between Zebrafish and Mice, Development, 1992, vol. 114, pp. 643-651.

    Google Scholar 

  • Quiring, R., Walldorf, U., Kloter, U., and Gehring, W.J., Homology of the eyeless Gene of Drosophila to the Small eye Gene in Mice and Aniridia in Humans, Science, 1994, vol. 265, pp. 785-789.

    Google Scholar 

  • Ready, D.F., Hanson, T.E., and Benzer, S., Development of the Drosophila Retina, a Neurocristalline Lattice, Dev. Biol., 1976, vol. 53, pp. 217-240.

    Google Scholar 

  • Reh, T.A. and Cagan, R., Intrinsic and Extrinsic Signals in the Developing Vertebrate and Fly Eyes: Viewing Vertebrate and Invertebrate Eyes in the Same Light, Prospect. Dev. Neurobiol., 1994, vol. 2, pp. 183-190.

    Google Scholar 

  • Reifegerste, R., Ma, C., and Moses, K., A Polarity Field Is Established Early in the Development of the Drosophila Compound Eye, Mech. Dev., 1997, vol. 68, pp. 69-79.

    Google Scholar 

  • Royet, J. and Finkelstein, R., Establishing Primordia in the Drosophila Eye-Antennal Imaginal Disc: The Roles of Decapentaplegic, Wingless and Hedgehog, Development, 1997, vol. 124, pp. 4793-4800.

    Google Scholar 

  • Rubin, G.M., Development of Drosophila Retina: Inductive Events Studied at Single Cell Resolution, Cell, 1989, vol. 57, pp. 519-520.

    Google Scholar 

  • Rubin, G.R., Signal Transduction and the Fate of the R7 Photoreceptor in Drosophila, Trends Genet., 1991, vol. 7, pp. 372-377.

    Google Scholar 

  • Saha, M.S., Spann, C.L., and Grainger, R.M., Embryonic Lens Induction: More than Meets the Optic Vesicle, Cell Differ. Dev., 1989, vol. 28, pp. 153-172.

    Google Scholar 

  • Saha, M.S., Servetnick, M., and Grainger, R.M., Vertebrate Eye Development, Curr. Opin. Genet. Dev., 1992, vol. 2, pp. 582-588.

    Google Scholar 

  • Sasai, Y., Lu, B., Steinbeisser, H., and De Robertis, E.M., Regulation of Neural Induction by the Chd and Bmp-4 Antagonistic Patterning Signals in Xenopus, Nature, 1995, vol. 376, pp. 333-336.

    Google Scholar 

  • Shen, W., and Mardon, G., Ectopic Eye Development in Drosophila Induced by Directed dachshund Expression, Development, 1997, vol. 124, pp. 45-52.

    Google Scholar 

  • Sheng, G., Thouvenot, E., Schmucker, D., et al., Direct Regulation of Rhodopsin 1 by Pax-6/eyless in Drosophila: Evidence for a Conserved Function in Photoreceptors, Genes Dev., 1997, vol. 11, pp. 1122-1131.

    Google Scholar 

  • Seo, H.C., Drivenes, O., Ellingsen, S., and Fjose, A., Expression of Two Zebrafish Homologs of the Murine Six3 Demarcates the Initial Eye Primorida, Mech. Dev., 1998, vol. 73, pp. 45-57.

    Google Scholar 

  • Servetnick, M. and Grainger, R.M., Changes in Neural and Lens Competence in Xenopus Ectoderm: Evidence for an Autonomous Developmental Timer, Development, 1991, vol. 112, pp. 177-188.

    Google Scholar 

  • Spemann, H., Uber Linsenbildung bei defekter Augenblase, Anat. Anz., 1903, vol. 23, pp. 457-464.

    Google Scholar 

  • Straznicky, K. and Gaze, R.M., The Growth of the Retina in Xenopus laevis: An Autoradiographic Study, J. Embryol. Exp. Morph., 1971, vol. 26, pp. 67-79.

    Google Scholar 

  • Svistunov, S.A. and Mitashov, V.I., A Radioautographic Study of Retina Growth in Adult Amphibians, Ontogenez, 1985, vol. 6, pp. 39-45.

    Google Scholar 

  • Thaker, H.M. and Kankel, D.R., Mosaic Analysis Gives an Estimate of the Extent of Genomic Involvement in the Development of the Visual System in Drosophila melanogaster, Genetics, 1992, vol. 131, pp. 883-894.

    Google Scholar 

  • Tio, M. and Moses, K., The Drosophila TGF alpha Homolog Spitz Acts in Photoreceptor Recruitment in the Developing Retina, Development, 1997, vol. 124, pp. 343-351.

    Google Scholar 

  • Tomarev, S.I., Pax-6, Eyes absent and Prox-1 in Eye Development, Int. J. Dev. Biol., 1997, vol. 41, pp. 835-842.

    Google Scholar 

  • Tomarev, S.I., Callaerts, P., Kos, L., et al., Squid Pax-6 and Eye Development, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 2421-2426.

    Google Scholar 

  • Tomlinson, A., Cellular Interactions in the Developing Drosophila Eye, Development, 1988, vol. 104, pp. 183-193.

    Google Scholar 

  • Tomlinson, A., Short-Range Positional Signals in the Developing Drosophila Eye, Development, 1989, vol. 17, Suppl., pp. 59-63.

    Google Scholar 

  • Tomlinson, A. and Ready, D.F., Cell Fate in the Drosophila Ommatidium, Dev. Biol., 1987, vol. 123, pp. 264-275.

    Google Scholar 

  • Tomlinson, A., Kimmel, B.E., and Rubin, G.M., Rough, a Drosophila Homeobox Gene Required in Photoreceptors R2 and R5 for Inductive Interactions in the Developing Eye, Cell, 1988, vol. 55, pp. 771-784.

    Google Scholar 

  • Toy, J., Yang, J.M., Leppert, G.S., and Sundin, O.H., The optx2 Homeobox Gene Is Expressed in Early Precursors of the Eye and Activates Retina-Specific Genes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 10 643-10 648.

    Google Scholar 

  • Varga, Z.M., Wegner, J., and Westerfield, M., Anterior Movement of Ventral Diencephalic Precursors Separates the Primordial Eye Field in the Neural Plate and Requires Cyclops, Development, 1999, vol. 126, pp. 5533-5546.

    Google Scholar 

  • Vinnikov, Ya.A., Evolyutsiya retseptorov (Evolution of Receptors), Leningrad: Nauka, 1979.

    Google Scholar 

  • Walther, C. and Gruss, P., Pax-6, a Murine Paired Box Gene, Is Expessed in the Developing CNS, Development, 1991, vol. 113, pp. 1435-1449.

    Google Scholar 

  • Wehrli, M. and Tomlinson, A., Independent Regulation of Anterior/Posterior and Equatorial/Polar Polarity in the Drosophila eye; Evidence for Involvement of Wnt Signalling in the Equatorial/Polar Axis, Development, 1998, vol. 125, pp. 1421-1432.

    Google Scholar 

  • Wetts, R. and Fraser, S.E., Multipotent Precursors Can Give Rise to All Major Cell Types of the Frog Retina, Science, 1988, vol. 239, pp. 1142-1145.

    Google Scholar 

  • Wetts, R., Serbedzija, G.M., and Frazer, S.E., Microinjection of Fluorescent Tracers to Study Neural Cell Lineages, Development, 1991, Suppl. 2, pp. 1-8.

    Google Scholar 

  • Wilson, P.A. and Hemmati-Brivanlou, A., Induction of Epidermis and Inhibition of Neural Fates by BMP-4, Nature, 1995, vol. 376, pp. 331-334.

    Google Scholar 

  • Wolff, T. and Ready, D.F., Cell Death in Normal and rough eye Mutants of Drosophila, Development, 1991, vol. 113, pp. 825-839.

    Google Scholar 

  • Wolpert, L., Beddington, R., Brockes, J., et al., Principles of Development, Oxford: Univ. Press, 1998.

    Google Scholar 

  • Xu, P.X., Cheng, J., Epstein, J.A., and Maas, R.L., Mouse Eya Genes during Limb Tendon Development and Encode a Transcriptional Activation Function, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 11 974-11 979.

    Google Scholar 

  • Xu, P.X., Zhang, X., Heaney, S., et al., Regulation of Pax6 Expression Is Conserved between Mice and Flies, Development, 1999, vol. 126, pp. 383-395.

    Google Scholar 

  • Zipursky, S.L. and Rubin, G.M., Determination of Neural Cell Fate: Lessons from the R7 Neuron of Drosophila, Annu. Rev. Neurosci., 1994, vol. 17, pp. 373-397.

    Google Scholar 

  • Zuker, C., On the Evolution of Eyes: Would You Like It Simple or Compound?, Science, 1994, vol. 265, pp. 742-743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitashov, V.I., Koussalokos, S. Molecular Mechanisms of Development and Differentiation of the Eye of Drosophila and Vertebrates. Russian Journal of Developmental Biology 32, 11–23 (2001). https://doi.org/10.1023/A:1009452925297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009452925297

Navigation