Skip to main content
Log in

Deriving Intrinsic Parameters of Photoinduced Electron Transfer Reaction from the Transient Effect Probed by Picosecond Time-Resolved Fluorescence Quenching

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence quenching of a pyrylium salt (PDP2+) by toluene in acetonitrile gives rise to a nonexponential decay. This behavior is ascribed to the so-called transient effect occurring at high quencher concentrations for diffusion-controlled reactions. First, the Kalman filter was used to deconvolute the original signal from the experimental decay curve and the response function of the apparatus. This treatment led to a calculated deconvoluted decay curve which enabled the transient effect analysis to be conducted. This real decay curve was then analyzed using two models. The Smoluchowski—Collins—Kimball (SCK) model, applied to diffusion-controlled reactions, yielded the reaction radius r AD and the intrinsic rate constant k act of the bimolecular electron transfer reaction. The Marcus electron transfer/diffusion (ETD) model, which provides a powerful method to evaluate the electronic coupling H el associate with the reaction, was also used but is more difficult to handle due to extensive computational needs. Finally, the adequacy of the two models (SCK and ETD) for analysis of the transient effect was addressed, as well as the appropriateness of the Kalman filter for fluorescence signal deconvolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Marcus (1956) J. Chem. Phys. 24, 966.

    Google Scholar 

  2. R. A. Marcus and N. Sutin (1985) Biochim. Biophys. Acta 811, 265.

    Google Scholar 

  3. I. R. Gould, D. Ege, and S. L. Mattes (1987) J. Am. Chem. Soc. 109, 3794.

    Google Scholar 

  4. N. Mataga, T. Asahi, Y. Kanda, T. Okada, and T. Kakitani (1988) Chem. Phys. 127, 249.

    Google Scholar 

  5. E. Vauthey, P. Suppan, and E. Haselbach (1988) Helv. Chim. Acta 71, 93.

    Google Scholar 

  6. J. M. Chen, T. I. Ho, and C. Y. Mou (1990) J. Phys. Chem. 94, 2889.

    Google Scholar 

  7. D. M. Guldi and K. D. Asmus (1997) J. Am. Chem. Soc. 119, 57.

    Google Scholar 

  8. D. Rehm and A. Weller (1970) Isr. J. Chem. 8, 259.

    Google Scholar 

  9. A. Weller (1961) Prog. React. Kinet. 1, 188.

    Google Scholar 

  10. R. M. Noyes (1961) Prog. React. Kinet. 1, 129.

    Google Scholar 

  11. S. A. Rice (1985) Comprehensive Chemical Kinetics, Vol 25. Diffusion Limited. Reactions, Elsevier, New York.

    Google Scholar 

  12. J. C. Andre, M. Niclause, and W. R. Ware (1978) Chem. Phys. 28, 371.

    Google Scholar 

  13. S. Nishikawa, T. Asahi, T. Okada, N. Mataga, and T. Kakitani (1991) Chem. Phys. Lett. 185, 237.

    Google Scholar 

  14. T. Kakitani, A. Yoshimori, and N. Mataga (1992) J. Phys. Chem. 96, 5385.

    Google Scholar 

  15. P. Jacques and X. Allonas (1995) Chem. Phys. Lett. 233, 533.

    Google Scholar 

  16. X. Allonas and P. Jacques (1997) Chem. Phys. 215, 371.

    Google Scholar 

  17. S. Murata, M. Nishimura, S. Y. Matsuzaki, and M. Tachiya (1994) Chem. Phys. Lett. 219, 200.

    Google Scholar 

  18. T. Niwa, K. Kikuchi, N. Matsusita, M. Hayashi, T. Katagiri, Y. Takahashi, and T. Miyashi (1993) J. Phys. Chem. 97, 11960.

    Google Scholar 

  19. S. Murata, S. Y. Matsuzaki, and M. Tachiya (1995) J. Phys. Chem. 99, 5354.

    Google Scholar 

  20. S. F. Swallen, K. Weidemaier, H. L. Tavernier, and M. D. Fayer (1996) J. Phys. Chem. 100, 8106.

    Google Scholar 

  21. S. Tripathi, V. Wintgens, P. Valat, V. Toscano, and J. Kossanyi (1987) J. Luminesc. 37, 149.

    Google Scholar 

  22. P. Jacques, D. Burget, and X. Allonas (1996) New J. Chem. 20, 233.

    Google Scholar 

  23. D. V. O'Connor, W. R. Ware, and J. C. Andre (1979) J. Phys. of Chem. 83, 1333.

    Google Scholar 

  24. J. C. Andre, L. M. Vincent, D. V. O'Connor, and W. R. Ware (1979) is J. Phys. Chem. 83, 2285.

    Google Scholar 

  25. A. E. McKinnon, A. G. Szabo, and D. R. Miller (1977) J. Phys.

  26. J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  27. M. Sikorski, E. Krystkowiak, and R. P. Steer (1998) J. Photochem. Photobiol. A Chem. 117, 1.

    Google Scholar 

  28. M. Sikorski, W. Augustiniak, I. V. Khmelinskii, and F. Wilkinson (1996) J. Luminesc. 69, 217.

    Google Scholar 

  29. M. Van Zegel, N. Boens, D. Daems, and F. C. De Schryver (1986) Chem. Phys. 101, 311.

    Google Scholar 

  30. R. Das and N. Periasamy (1989) Chem. Phys. 136, 361.

    Google Scholar 

  31. A. Gelb, J. F. Kasper, R. A. Nasdh, C. F. Price, and A. A. Sutherland (1974) Applied Optimal Estimation, MIT Press, Cambridge, MA

    Google Scholar 

  32. N. V. Ahmed (1988) Element of Finite Dimensional Systems and Control Theory John Wiley & Sons, New York, Longman Group UK Ltd., Longman House, Burut Hill, Harlow.

    Google Scholar 

  33. F. C. Collins and G. E. Kimball (1949) J. Colloid Sci. 4, 425.

    Google Scholar 

  34. The ground-state geometry of PDP2+ was optimized by using the MNDO Hamiltonian from the Hyperchem package (Hypercube Inc., Canada). The radius was then derived from the calculation of the volume using a grid method.

  35. D. W. Marquardt (1993) J. Soc. Indust. Appl. Math. 11, 431.

    Google Scholar 

  36. L. Burel, M. Mostafavi, S. Murata, and M. Tachiya (1999) J. Phys. Chem. 103, 5882.

    Google Scholar 

  37. G. M. Brown and N. Sutin (1979) J. Am. Chem. Soc. 101, 883.

    Google Scholar 

  38. M. Tachiya (1983) Radiat. Phys. Chem. 21, 167.

    Google Scholar 

  39. L. Song, S. F. Swallen, R. C. Dorfman, K. Weidemaier, and M. D. Fayer (1996) J. Phys. Chem. 97, 1374.

    Google Scholar 

  40. S. F. Swallen, K. Weidemaier, and M. D. Fayer (1996) J. Chem. Phys. 104, 2976.

    Google Scholar 

  41. H. Sano and M. Tachiya (1979) J. Chem. Phys. 71, 1276.

    Google Scholar 

  42. From ISML library, trademark of Visual Numerics Inc., Hous-ton, TX.

  43. G. J. Kavarnos and N. J. Turro (1986) Chem. Rev. 86, 401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allonas, X., Jacques, P., Accary, A. et al. Deriving Intrinsic Parameters of Photoinduced Electron Transfer Reaction from the Transient Effect Probed by Picosecond Time-Resolved Fluorescence Quenching. Journal of Fluorescence 10, 237 (2000). https://doi.org/10.1023/A:1009424521742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009424521742

Navigation