Advertisement

Chromosome Research

, Volume 8, Issue 7, pp 615–619 | Cite as

The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in-situ hybridization of highly repeated DNA sequences

  • S. Minelli
  • F. Maggini
  • M. T. Gelati
  • A. Angiolillo
  • P. G. Cionini
Article

Abstract

The chromosome complement of olive (Olea europaea L.) has been characterized by differential staining of the chromatin and chromosomal localization of highly repeated DNA sequences and ribosomal cistrons. DAPI staining produces different-sized positive bands in various locations on all the chromosomes. By combining this band pattern with the results obtained from cytological hybridization of OeTaq80, OeTaq178, and OeGEM86 DNA tandem repeats, most of the pairs can be distinguished from each other, in spite of the large number of chromosomes (2n=46), their small size and similar morphology. Different tandem-repeated DNA sequences may be contained into single heterochromatic chromosome regions, even though there are regions where repeats of only one family are present. OeTaq80- and OeGEM86-related DNA sequences are rather specific to the heterochromatin at the chromosome ends, while most sequences related to the longer OeTaq178 probe are confined to interstitial heterochromatin. Some exceptions suggest that major chromosomal rearrangements occurred during genome evolution. Polymorphism, which may differentiate olive cultivars, was observed within chromosome pairs I, V, and VII.

chromosome banding FISH Olea europaea ribosomal cistrons tandem repeated DNA sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson A (1931) Studien über die Embriologie der Familien Celostraceae, Oleaceae und Apocynaceae. Acta Univ Lund 27: 1–112.Google Scholar
  2. Bitonti MB, Cozza R, Chiappetta A et al. (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83: 188–195.Google Scholar
  3. Breviglieri N, Battaglia E (1954) Ricerche cariologiche in Olea europaea L. Caryologia 6: 271–283.Google Scholar
  4. Chevalier A (1948) L'origine de l'olivier cultivée et ses variations. Rev Int Bot Appl Agric Trop 28:1–25.Google Scholar
  5. Ciferri R (1950) Dati e ipotesi sull'origine e l'evoluzione dell' olivo. Olearia 4: 115–122.Google Scholar
  6. Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (2000) Inter-and intraspecific variation of Olea genotypes due to redundancy alterations of tandem repeated DNA sequences. Mol Ecol (in press).Google Scholar
  7. Cuadrado A, Jouve N (1994) Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6 × triticale. Chromosome Res 2: 331–338.Google Scholar
  8. Durante M, Cremonini R, Tagliasacchi AM, Forino LMC, Cionini PG (1987) Characterization and chromosomal localization of fast renaturing and satellite DNA sequences in Phaseolus coccineus. Protoplasma 137: 100–108.Google Scholar
  9. Fagundes V, Vianna-Morgante AM, Yonegada-Yassuda Y (1997) Telomeric sequences localization and G-banding patterns in the identification of a polymorphic chromosomal rearrangement in the rodent Akodon cursor (2n=14, 15 and 16). Chromosome Res 5: 228–232.Google Scholar
  10. Falistocco E, Tosti N (1996) Cytogenetic investigation in Olea europaea L. J Genet Breed 50: 235–238.Google Scholar
  11. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7: 1869–1885.Google Scholar
  12. Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 8: 372–373.Google Scholar
  13. Jones JDG, Flavell RB (1982) The structure, amount and chromosomal localization of defined repeated DNA sequences in species of the genus Secale. Chromosoma 86: 613–641.Google Scholar
  14. Katsiotis A, Hagidimitriou M, Douka A, Hatzopoulos P (1998) Genomic organization, sequence interrelationship, and physical localization using in situ hybridization of two tandemly repeated DNA sequences in the genus Olea. Genome 41: 527–534.Google Scholar
  15. Mazzolani G, Altamura Betti MM (1977) Elementi per la revisione del genere Olea (Tourn.) Linn. I. Nota introduttiva. Ann Bot. (Rome) 36: 463–469.Google Scholar
  16. Meyne J, Baker RJ, Hobart HH et al. (1990) Distribution of non telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99: 3–10.Google Scholar
  17. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324.Google Scholar
  18. Taylor H (1945) Cytotaxonomy and phylogeny of the Oleaceae. Brittonia 5: 337–367.Google Scholar
  19. Zohary D (1995) Olive. Olea europaea (Oleaceae). In: Smartt J, Simmonds NW eds. Evolution of Crop Plants. Singapore: Longmann, pp 379–382.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • S. Minelli
    • 1
  • F. Maggini
    • 2
  • M. T. Gelati
    • 2
  • A. Angiolillo
    • 3
  • P. G. Cionini
    • 1
  1. 1.Dipartimento di Biologia Cellulare e Molecolare, Sezione di Citologia e Genetica MolecolareUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di Agrobiologia e AgrochimicaUniversità della TusciaViterboItaly
  3. 3.Istituto di Ricerche sulla OlivicolturaC.N.R.PerugiaItaly

Personalised recommendations