Skip to main content
Log in

Human monochromosome hybrid cell panel characterized by FISH in the JCRB/HSRRB

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The human monochromosome hybrid cell panel in the Japanese Collection of Research Bioresources (JCRB) consists of 23 mouse cell clones, each containing a different human chromosome (the Y chromosome is not yet included). The panel is currently distributed by the Human Science Research Resources Bank (HSRRB) in Osaka. In order to determine the state of the human chromosomes and to supply the information to investigators, we characterized the cells by fluorescence in-situ hybridization (FISH) with corresponding human chromosome-specific painting probes, and, in part, by reverse FISH with the hybrid total DNA hybridized onto human metaphase spreads. Here, we report the frequency of intact human chromosomes maintained in each hybrid and the retained subregions of corresponding human chromosomes with relative frequencies estimated by fluorescent intensity. We used specific painted patterns to classify each hybrid into tentative types with their frequencies showing the nature of each hybrid and the state of rearrangements. This characterization will provide valuable information to investigators using the panel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cui X, Brenneman M, Meyne J, Oshimura M, Goodwin EH, Chen DJ (1999) The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutat Res 434: 75-88.

    PubMed  CAS  Google Scholar 

  • Drwinga HL, Toji LH, Kim CH, Greene AE, Mulivor RA (1993) NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. Genomics 16: 311-314.

    Article  PubMed  CAS  Google Scholar 

  • Dubois BL, Naylor SL (1993) Characterization of NIGMS human/rodent somatic cell hybrid mapping panel 2 by PCR. Genomics 16: 315-319.

    Article  PubMed  CAS  Google Scholar 

  • Dutly F, Balmer D, Baumer A, Binkert F, Schinzel A (1998) Isochromosomes 12p and 9p: parental origin and possible mechanisms of formation. Eur J Hum Genet 6: 140-144.

    Article  PubMed  CAS  Google Scholar 

  • Ejima Y, Oshimura M, Sasaki MS (1990) Establishment of a novel immortalized cell line from ataxia telangiectasia fibroblasts and its use for the chromosomal assignment of radiosensitivity gene. Int J Radiat Biol 58: 989-997.

    PubMed  CAS  Google Scholar 

  • England NL, Cuthbert AP, Trott DA et al. (1996) Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16 INK4A). Carcinogenesis 17: 1567-1575.

    PubMed  CAS  Google Scholar 

  • Horikawa I, Oshimura M, Barrett JC (1998) Repression of the telomerase catalytic subunit by a gene on human chromosome 3 that induces cellular senescence. Mol Carcinog 22: 65-72.

    Article  PubMed  CAS  Google Scholar 

  • Jongmans W, Verhaegh GW, Jaspers NG et al. (1996) The defect in the AT-like hamster cell mutants is complemented by mouse chromosome 9 but not by any of the human chromosomes. Mutat Res 364: 91-102.

    PubMed  CAS  Google Scholar 

  • Katoh M, Nakagawa Y, Yawata T et al. (1995) Cosmids and transcribed sequences from chromosome 11q23. Jpn J Hum Genet 40: 307-317.

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347: 400-402.

    Article  PubMed  CAS  Google Scholar 

  • Kodama S, Kashino G, Suzuki K et al. (1998) Failure to complement abnormal phenotypes of simian virus 40-transformed Werner syndrome cells by introduction of a normal human chromosome 8. Cancer Res 58: 5188-5195.

    PubMed  CAS  Google Scholar 

  • Koi M, Morita H, Shimizu M, Oshimura M (1989a) Construction of mouse A9 clones containing a single human chromosome (X/autosome translocation) via microcell fusion. Jpn J Cancer Res 80: 122-125.

    PubMed  CAS  Google Scholar 

  • Koi M, Shimizu M, Morita H, Yamada H, Oshimura M (1989b) Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via micro-cell fusion. Jpn J Cancer Res 80: 413-418.

    PubMed  CAS  Google Scholar 

  • Koi M, Lamb PW, Filatov L, Feinberg AP, Barrett JC (1997) Construction of chicken x human microcell hybrids for human gene targeting. Cytogenet Cell Genet 76: 72-76.

    PubMed  CAS  Google Scholar 

  • Kugoh H, Hashiba H, Shimizu M, Oshimura M (1990) Suggestive evidence for functionally distinct, tumor-suppressor genes on chromosomes 1 and 11 for a human fibrosarcoma cell line, HT1080. Oncogene 5: 1637-1644.

    PubMed  CAS  Google Scholar 

  • Kugoh H, Mitsuya K, Meguro M, Shigenami K, Schulz TC, Oshimura M (1999) Mouse A9 cells containing single human chromosomes for analysis of genomic imprinting. DNA Res 6: 165-172.

    Article  PubMed  CAS  Google Scholar 

  • Kugoh H, Fujiwara M, Kihara K et al. (2000) Cellular senescence of a human bladder carcinoma cell line (JTC-32) induced by a normal chromosome 11. Cancer Genet Cytogenet 116: 158-163.

    Article  PubMed  CAS  Google Scholar 

  • Kurimasa A, Nagata Y, Shimizu M, Emi M, Nakamura Y, Oshimura M (1994) A human gene that restores the DNA-repair defect in SCID mice is located on 8p11.1q11.1. Hum Genet 93: 21-26.

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Shinohara T, Notsu T et al. (1998) Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acids Res 26: 3447-3448.

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter SA, Garcia-Heras J, Ledbetter DH (1990) ``PCR-karyotype'' of human chromosomes in somatic cell hybrids. Genomics 8: 614-622.

    Article  PubMed  CAS  Google Scholar 

  • Lee MP, DeBaun MR, Mitsuya K et al. (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 96: 5203-5208.

    Article  PubMed  CAS  Google Scholar 

  • Leonard JC, Drwinga HL, Kim CH et al. (1997) Regional mapping panels for chromosomes 3, 4, 5, 11, 15, 17 18, and X. Genomics 46: 530-534.

    Article  PubMed  CAS  Google Scholar 

  • Leonard JC, Toji LH, Bender PK, Beiswanger CM, Beck JC (1998) Panel description. Regional mapping panels for chromosomes 8, 13, 21, and 22. Genomics 51: 17-20.

    Article  PubMed  CAS  Google Scholar 

  • Leonard JC, Toji LH, Bender PK, Beiswanger CM, Beck JC, Johnson RT (1999) Panel description. Regional mapping panels for chromosomes 6, 9, and 16. Genomics 58: 323-326.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura S, Weemaes C, Smeets D et al. (1997) Genetic mapping using microcell-mediated chromosome transfer suggests a locus for Nijmegen breakage syndrome at chromosome 8q21-24. Am J Hum Genet 60: 1487-1494.

    PubMed  CAS  Google Scholar 

  • Meguro M, Mitsuya K, Sui H et al. (1997) Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet 6: 2127-2133.

    Article  PubMed  CAS  Google Scholar 

  • Mills W, Critcher R, Lee C, Farr CJ (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum Mol Genet 8: 751-761.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya K, Meguro M, Sui H et al. (1998) Epigenetic reprogramming of the human H19 gene in mouse embryonic cells does not erase the primary parental imprint. Genes Cells 3: 245-255.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya K, Meguro M, Lee MP et al. (1999) LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet 8: 1209-1217.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Oshimura M, Tanaka N (1996) Chromosome analyses of human single chromosome library. In: Ohno T, organizer: Proceedings of 3rd Internet World Congress on Biomedical Sciences 1996.12.9-20; Symposium SBB0202 Poster AN0114, Riken, Tsukuba, Japan (http://www.3iwc.riken.go.jp/CONGRESS/index.html).

  • Ning Y, Lovell M, Taylor L, Pereira-Smith OM (1992) Isolation of monochromosomal hybrids following fusion of human diploid fibroblast-derived microcells with mouse A9 cells. Cytogenet Cell Genet 60: 79-80.

    PubMed  CAS  Google Scholar 

  • Ning Y, Lovell M, Cooley LD, Pereira-Smith OM (1993) ``PCR karyotype'' of monochromosomal somatic cell hybrids. Genomics 16: 758-760.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi H, Ishikiriyama S, Fukushima Y (1993) New diagnostic method for Pallister-Killian syndrome: detection of i(12p) in interphase nuclei of buccal mucosa by fluorescence in situ hybridization. Am J Med Genet 45: 123-128.

    Article  PubMed  CAS  Google Scholar 

  • Oshimura M, Shimizu M, Kugoh H (1996) Genetic regulation of telomerase in a multiple pathways model to cellular senescence. Hum Cell 9: 301-308.

    PubMed  CAS  Google Scholar 

  • Raffel LJ, Mohandas T, Rimoin DL (1986) Chromosomal mosaicism in the Killian/Teschler-Nicola syndrome. Am J Med Genet 24: 607-611.

    Article  PubMed  CAS  Google Scholar 

  • Struthers JL, Cuthbert CD, Khalifa MM (1999) Parental origin of the isochromosome 12p in Pallister-Killian syndrome: molecular analysis of one patient and review of the reported cases. Am J Med Genet 84: 111-115.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Sugawara M, Sugimoto M, Oshimura M, Furuichi Y (1997) Gene expressions of transferred human chromosome 8 in mouse cell lines. Biochem Biophys Res Commun 230: 315-319.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Ishida T, Ueda S, Sofuni T, Mizusawa H (1995) Comparative mapping of the immunoglobulin Cε1 gene (IGHE) in five species of nonhuman primates by fluorescence in situ hybridization. Cytogenet Cell Genet 70: 239-242.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T, Miyaki M (1991) Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 349: 340-342.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Shimizu M, Horikawa I et al. (1998) Evidence for a putative telomerase repressor gene in the 3p14.2-p21.1 region. Genes Chromosomes Cancer 23: 123-133.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Horikawa I, Kugoh H, Shimizu M, Barrett JC, Oshimura M (1999) Telomerase-independent senescence of human immortal cells induced by microcell-mediated chromosome transfer. Mol Carcinog 25: 249-255.

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Yoshida H, Uejima H et al. (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16: 133-143.

    Article  PubMed  CAS  Google Scholar 

  • Tomizuka K, Shinohara T, Yoshida H et al. (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci USA 97: 722-727.

    Article  PubMed  CAS  Google Scholar 

  • Uejima H, Shinohara T, Nakayama Y, Kugoh H, Oshimura M (1998) Mapping a novel cellular-senescence gene to human chromosome 2q37 by irradiation microcell-mediated chromosome transfer. Mol Carcinog 22: 34-45.

    Article  PubMed  CAS  Google Scholar 

  • Uzawa N, Yoshida MA, Hosoe S, Oshimura M, Amagasa T, Ikeuchi T (1998) Functional evidence for involvement of multiple putative tumor suppressor genes on the short arm of chromosome 3 in human oral squamous cell carcinogenesis. Cancer Genet Cytogenet 107: 125-131.

    Article  PubMed  CAS  Google Scholar 

  • Warburton D, Gersen S, Yu MT, Jackson C, Handelin B, Housman D (1990) Monochromosomal rodent-human hybrids frommicrocell fusion of human lymphoblastoid cells containing an inserted dominant selectable marker. Genomics 6: 358-366.

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Wake N, Fujimoto S, Barrett JC, Oshimura M (1990) Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene 5: 1141-1147.

    PubMed  CAS  Google Scholar 

  • Zhang J, Marynen P, Devriendt K, Fryns JP, Van den Berghe H, Cassiman JJ (1989) Molecular analysis of the isochromosome 12P in the Pallister-Killian syndrome. Construction of a mouse-human hybrid cell line containing an i(12p) as the sole human chromosome. Hum Genet 83: 359-363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanabe, H., Nakagawa, Y., Minegishi, D. et al. Human monochromosome hybrid cell panel characterized by FISH in the JCRB/HSRRB. Chromosome Res 8, 319–334 (2000). https://doi.org/10.1023/A:1009283529392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009283529392

Navigation