Skip to main content
Log in

Neocentric activity of rye 5RL chromosome in wheat

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The neocentric activity of a constriction located on the long arm of rye 5R chromosome (5RL) was analysed. It is not observed in normal rye but it is unusually stretched in bivalents involving 5RL telosomes in wheat–ditelosomic 5RL addition lines. In 20% of metaphase I cells, the 5RL bivalent presents the centromeres oriented to one pole and the constrictions oriented towards the opposite pole with a strong tension. In 5% of the cells, the constriction was able to orient the bivalent to the poles without tension in the centromeres. Sister chromatid cohesion, which is one of the distinct features of centromeric function, is persistent at the constriction in delayed 5RL chromosomes at anaphase I. Neither the elongation of the constriction nor the neocentric activity was observed at second meiotic division or mitosis. FISH studies showed that the 5RL constriction lacked detectable quantities of two repetitive DNA sequences, CCS1 and the 180-bp knob repeat, present at cereal centromeres and neocentromeres, respectively. We propose that, under special conditions, such as the wheat background, the normally non-centromeric DNA present at this region of 5RL acquires a specific chromatin structure, differentiated as an elongated constriction, which is able to function as a centromere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Genetics 95: 13073-13078.

    CAS  Google Scholar 

  • Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105: 261-268.

    Article  PubMed  Google Scholar 

  • Bajer A (1968) Behaviour and fine structure of spindle fibers during mitosis in endosperm. Chromosoma 25: 249-281.

    Article  Google Scholar 

  • Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KHA (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8: 217-227.

    Article  PubMed  CAS  Google Scholar 

  • Brown W, Tyler-Smith C (1995) Centromere activation. Trends Genet 11: 337-339.

    Article  PubMed  CAS  Google Scholar 

  • Cancilla MR, Tainton KM, Barry AE et al. (1998) Direct cloning of human 10q25 neocentromere DNA using transformation associated recombination (TAR) in yeast. Genomics 47: 399-404.

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997) Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet 61: 1225-1233.

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1998) Turning on the centromere. Nature Genet 18: 3-4.

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Reed LM, Yu H-G, Muszynski MG, Hiatt EN (1999) A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11: 1227-1238.

    Article  PubMed  CAS  Google Scholar 

  • Heyward MD (1962) Genetic control of neocentric activity in rye. Heredity 17: 439-441.

    Google Scholar 

  • Jones G (1969) Further correlations between chiasmata and U-type exchanges in rye meiosis. Chromosoma 26: 105-118.

    Article  Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effect on centromere identity and function. Trends Genet 13: 489-496.

    Article  PubMed  CAS  Google Scholar 

  • Katterman G (1939) Ein neuer karyotyp bei roggen. Chromosoma 1: 284-299.

    Article  Google Scholar 

  • Kavander T, Vinikka Y (1987) Neocentric activity in open-pollinated cultivars of rye. Hereditas 107: 229-233.

    Google Scholar 

  • Mikhailova EI, Naranjo T, Shepherd K, Wennekes van Eden J, Heyting C, de Jong JH (1998) The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107: 338-350.

    Article  Google Scholar 

  • Moore G, Aragón-Alcaide L, Roberts M, Reader S, Miller T, Foote T (1997a) Are rice chromosomes components of a holocentric chromosome ancestor? Plant Mol Biol 35: 17-23.

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Roberts M, Aragón-Alcaide L, Foote T (1997b) Centromeric sites and cereal chromosome evolution. Chromosoma 105: 321-323.

    Article  PubMed  CAS  Google Scholar 

  • Moore DP, Page AW, Tang TT-L, Kerrebrock AW, Orr-Weaver TL (1998) The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate. J Cell Biol 140: 1003-1012.

    Article  PubMed  CAS  Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78: 4490-4494.

    Article  PubMed  CAS  Google Scholar 

  • Prakken R, Müntzing A (1942) A meiotic peculiarity in rye, simulating a terminal centromere. Hereditas 28: 441-482.

    Article  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721-728.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MM, Vikomerson H (1942) On the anaphase movement of chromosomes. Proc Natl Acad Sci USA 28: 433-436.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel R (1987) Neocentric activity in chromosome 5R of rye revealed by haploidy. Hereditas 107: 1-6.

    Google Scholar 

  • Sekelsky JJ, Hawley RS (1995) The bond between sisters. Cell 83: 157-160.

    Article  PubMed  CAS  Google Scholar 

  • Sybenga J (1981) Specialization in the behaviour of chromosomes on the meiotic spindle. Genetica 57: 143-151.

    Article  Google Scholar 

  • Vinikka Y (1985) Identification of the chromosomes showing neocentric activity in rye. Theor Appl Genet 70: 66-71.

    Google Scholar 

  • Vinikka Y, Kavander T (1986) C-band polymorphism in the inbred lines showing neocentric activity in rye. Hereditas 104: 203-207.

    Google Scholar 

  • Warburton PE, Cooke HJ (1997) Hamster chromosomes containing amplified human a satellite DNA show delayed sister chromatid separation in the absence of de nova kinetochore formation. Chromosoma 106: 149-159.

    Article  PubMed  CAS  Google Scholar 

  • Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6: 410-416.

    Article  PubMed  CAS  Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric minichromosomes in Drosophila. Nature Genet 18: 30-37.

    Article  PubMed  CAS  Google Scholar 

  • Yu H-G, Hiatt EN, Chan A, Sweeney M, Dawe RK (1997) Neocentromere-mediated chromosome movement in maize. J Cell Biol 139: 831-840.

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Fransz PF, Wennekes van Eden J, Zabel P, van Kammen A, de Jong JH (1996) High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescent in situ hybridisation. Plant Mol Biol Rep 14: 232-242.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzanero, S., Puertas, M.J., Jiménez, G. et al. Neocentric activity of rye 5RL chromosome in wheat. Chromosome Res 8, 543–554 (2000). https://doi.org/10.1023/A:1009275807397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009275807397

Navigation