Skip to main content
Log in

Report on the First International Conference on the Mammalian Centromere

  • Published:
Chromosome Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Choo KHA (1997) Centromere DNA dynamics: latent centromeres and neocentromeres (Review). Am J Hum Genet 61: 1225–1233.

    Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Saffery R, Tainton KM, Kalitsis P, Martyn, J. Barry AE, Choo KHA (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nature Genet 16: 144–153.

    Google Scholar 

References

  • Lee C, Li X, Jabs EW, Court DR, Lin CC (1995) Human gamma X satellite DNA: an X chromosome specific centromeric DNA sequence. Chromosoma 104: 103–112.

    Google Scholar 

  • Lee C, Lin CC (1996) Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species. Chrom Res 4: 427–435.

    Google Scholar 

  • Lee C, Court DR, Cho C, Haslett, JL, Lin CC (1997) Higherorder organization of subrepeats and the evolution of cervid satellite I DNA. J Mol Evol 44: 327–335.

    Google Scholar 

  • Lin CC, Sasi R, Lee C, Fan YS, Court DR (1993) Isolation and identification of a novel tandemly repeated DNA sequence in the centromeric region of human chromosome 8. Chromosoma 102: 333–339.

    Google Scholar 

  • Plucienniczak A, Skowronski J, Jaworski J (1982) Nucleotide sequence of bovine 1.715 satellite DNA and its relation to other bovine satellite sequences. J Mol Biol 158: 293–304.

    Google Scholar 

References

  • Antonacci R, Rocchi M, Archidiacono N, Baldini A (1995) Ordered mapping of three alpha satellite DNA subsets on human chromosome 22. Chrom Res 3: 124–127.

    Google Scholar 

  • Choo KHA (1997) The Centromere. Oxford: Oxford University Press.

    Google Scholar 

  • Clarke L, Baum M, Marshall LG, Ngan VK, Steiner NC (1993) Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harbor Symp Quant Biol 58: 687–695.

    Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1992) Structure of the pericentric long arm region of the human Y chromosome. J Mol Biol 228: 421–432.

    Google Scholar 

  • Cooper KF, Fisher RB, Tyler-Smith C (1993) Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. J Mol Biol 230: 787–799.

    Google Scholar 

  • Haaf T, Ward DC (1994) Structural analysis of alpha satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697–709.

    Google Scholar 

  • Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC (1997) Human centromeric DNAs. Hum Genet 3: 291–304.

    Google Scholar 

  • Jackson MS, Mole SE, Ponder BA (1992) Characterization of a boundary between satellite III and alphoid sequences on human chromosome 10. Nucleic Acids Res 20: 4781–4787.

    Google Scholar 

  • Jackson MS, Slijepcevic P, Ponder BAJ (1993) The organization of repetitive sequences in the pericentromeric region of human chromosome 10. Nucleic Acids Res 21: 5865–5874.

    Google Scholar 

  • Shiels C, Coutelle C, Huxley C (1997) Contiguous arrays of satellites 1, 3, and beta form a 1.5 Mb domain on chromosome 22p. Genomics 44: 35–44.

    Google Scholar 

  • Trowell HE, Nagy A, Vissel B, Choo KHA. (1993) Long-range analyses of the centromeric regions of human chromosomes 13, 14, and 21: identification of a narrow domain containing two key elements. Hum Mol Genet 2: 1639–1649.

    Google Scholar 

  • Tyler-Smith C, Oakey R, Larin Z et al. (1993) Localisation of the DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nature Genet 5: 368–375.

    Google Scholar 

  • Wevrick R, Willard VP, Willard HF (1992) Structure of DNA near long tandem arrays of alpha satellite DNA at the centromere of human chromosome 7. Genomics 14: 912–923.

    Google Scholar 

References

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nature Genet 16: 144–153.

    Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496.

    Google Scholar 

  • Murphy TD, Karpen GH (1995) Localization of centromere function in a Drosophila minichromosome. Cell 82: 599–609.

    Google Scholar 

  • Murphy TD, Karpen GH (1998) Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93: 317–320.

    Google Scholar 

  • Sun X, Wahlstrom J, Karpen GH (1997) Molecular structure of a functional Drosophila centromere. Cell 91: 1007–1019.

    Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet 18: 30–37.

    Google Scholar 

References

  • Zinkowski RP, Meyne J, Brinkley BR (1991) The centromerekinetochore complex: a repeat subunit model. J Cell Biol 113:1091–1110.

    Google Scholar 

References

  • Bayne RA, Broccoli D, Taggart MH, Thomson EJ, Farr CJ, Cooke HJ (1994) Sandwiching of a gene within 12 kb of a functional telomere and alpha satellite does not result in silencing. Hum Mol Genet 3: 539–546.

    Google Scholar 

  • Brown W, Heller R, Loupart ML, Shen MH, Chand A (1996) Mammalian artificial chromosomes. Curr Opin Genet Dev 6: 281–288.

    Google Scholar 

  • Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179–188.

    Google Scholar 

  • Dieken ES, Epner EM, Fiering S, Fournier RE, Groudine M (1996) Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nature Genet 12: 174–182.

    Google Scholar 

  • Farr C, Fantes J, Goodfellow P, Cooke H (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88: 7006–7010.

    Google Scholar 

  • Farr CJ, Stevanovic M, Thomson EJ, Goodfellow PN, Cooke HJ (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2: 275–282.

    Google Scholar 

  • Farr CJ, Bayne RA, Kipling D, Mills W, Critcher R, Cooke HJ (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14: 5444–5454.

    Google Scholar 

  • Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet 15: 345–355.

    Google Scholar 

  • Heller R, Brown KE, Burgtorf C, Brown WR (1996) Minichromosomes derived from the human Y chromosome by telomere directed chromosome breakage Proc Natl Acad Sci USA 93: 7125–7130.

    Google Scholar 

  • Ikeno M, Grimes B, Okazaki T et al. (1998) Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol 16: 431–439.

    Google Scholar 

  • Karpen GH, Allshire RC (1997) The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496.

    Google Scholar 

  • Koi M, Lamb PW, Filatov L, Feinberg AP, Barrett JC (1997) Construction of chicken × human microcell hybrids for human gene targeting. Cytogenet Cell Genet 76: 72–76.

    Google Scholar 

  • Kuroiwa Y, Shinohara T, Notsu T, Tomizuka K, Yoshida H, Takeda S, Oshimura M, Ishida I (1998) Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acids Res 26: 3447–3448.

    Google Scholar 

  • Shen MH, Yang J, Loupart ML, Smith A, Brown W (1997) Human mini-chromosomes in mouse embryonal stem cells. Hum Mol Genet 6: 1375–1382.

    Google Scholar 

References

  • Brenner S, Pepper D, Berns MW, Tan EM, Brinkley BR (1981) Kinetochore structure, duplication and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol 91: 95–102.

    Google Scholar 

  • Brinkley BR, Ouspenski I, Zinkowski R (1992) Structure and molecular organization of the centromere-kinetochore complex. Trends Cell Biol 2: 15–21.

    Google Scholar 

  • Casiano CA, Humbel RL, Peebles C, Covini G, Tan EM (1995) Autoimmunity to the cell cycle-dependent centromere protein p300d/CENP-F in disorders associated with cell proliferation. J Autoimmunity 8: 575–586.

    Google Scholar 

  • Casiano CA, Landberg G, Ochs RL, Tan EM (1993) Autoantibodies to a novel cell cycle-regulated protein that accumulates in the nuclear matrix during S phase and is localized in the kinetochores and spindle midzone during mitosis. J Cell Sci 106: 1045–1056.

    Google Scholar 

  • Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD (1992) The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10: 731–757.

    Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.

    Google Scholar 

  • Furuta K, Hildebrandt B, Matsuoka S, Kiyosawa K, Reimer G, Luderschmidt C, Chan EKL, Tan EM (1998) Immunological characterization of heterochromatin protein p25β autoantibodies and relationship with centromere autoantibodies and pulmonary fibrosis in systemic sclerosis. J Mol Med 76: 54–60.

    Google Scholar 

  • He D, Zeng C, Woods K et al. (1998) CENP-G: a new centromere protein that is associated with the α-1-satellite DNA subfamily. Chromosoma 107: 189–197.

    Google Scholar 

  • Moroi Y, Hartman AL, Nakane PK, Tan EM (1981) Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J Cell Biol 90: 254–259.

    Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J., Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77: 1627–1631.

    Google Scholar 

  • Rattner JB, Rees J, Whitehead CM et al. (1997) High frequency of neoplasia in patients with autoantibodies to centromere protein CENP-F. Clin Invest Med 20: 308–309.

    Google Scholar 

  • Rattner JB, Roo A, Fritzler MJ, Valencia DW, Yen TJ (1993) CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell cycle dependent localization. Cell Mol Cytoskel 26: 214–226.

    Google Scholar 

  • Tan EM (1998) Autoantibodies as diagnostic markers and reporters on the nature of immunogenic autoantigens. The Immunologist (in press).

  • Tan EM, Rodnan GP, Garcia I, Moroi Y, Fritzler MJ, Peebles C. (1980) Diversity of antinuclear antibodies in progressive systemic sclerosis. Anti-centromere autoantibody and its relationship to CREST syndrome. Arthritis Rheum 23: 617–625.

    Google Scholar 

  • Theofilopoulos AN, Kofler R, Noonan D (1986) Molecular aspects of murine systemic lupus erythematosus. Springer Semin Immunopathol 9: 121–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C.C. Report on the First International Conference on the Mammalian Centromere. Chromosome Res 6, 581–593 (1998). https://doi.org/10.1023/A:1009266423757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009266423757

Keywords

Navigation