Skip to main content
Log in

Measurement of Water Diffusion Through Cellophane Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A method for measuring diffusion using a simple ATR device is demonstrated using water swollen cellophane film. The diffusion coefficient (D = 0.56 × 10−9 m2 s−1) was comparable to previously published results for similar samples, but significantly different from recent measurements by NMR imaging on identical samples. An explanation is proposed based on cellophane morphology and diffusion through pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aminabhavi, T. M., Aithal, U. S. and Shukla, S. S. (1989) Molecular transport of organic liquids through polymer films. J M S-Rev. Macromol. Phys. C29(2,3), 319-363.

    Google Scholar 

  • Aminabhavi, T. M., Aithal, U. S. and Shukla, S. S. (1988) An overview of the theoretical models used to predict transport of small molecules through polymer membranes. J M S-Rev. Macromol. Phys. C28(3, 4), 421-474.

    Google Scholar 

  • Balik, C. M. and Xu, J. R. (1994) Simultaneous measurement of water diffusion, swelling and calcium carbonate removal in a latex paint using FTIR-ATR. J. Appl. Poly. Sci. 52(7), 975-983.

    Google Scholar 

  • Banerjee, S., Semwal, R. P. and Agarwal, S. (1995) Measurement of diffusivities of sulphur mustard (SM) and its analogue oxygen mustard (OM) in cured butyl, nitrile and natural-rubber sheets by weight gain and FTIR-ATR methods. J. Appl. Poly. Sci. 57(12), 1483-1490.

    Google Scholar 

  • Baum, G. A. (1973) Thermal depolarisation currents of regenerated cellulose films. J. Appl. Poly. Sci. 17, 2855-2866.

    Google Scholar 

  • Bhat, N. V. and Makwana, D. N. (1988) Effects of swelling treatments on fine structure and mechanical properties of cellophane film. Textile Res. J. 58(4), 233-238.

    Google Scholar 

  • Bradley, S. A. and Carr, S. H. (1976) Mechanical loss processes in polysaccharides. J. Poly. Sci: Poly. Phys. Edn. 14, 111-124.

    Google Scholar 

  • Brown, W. and Chitumbo, K. (1975) Solute diffusion in hydrated polymer networks, part 1: cellulose gels. J C S. Trans. Faraday Soc. 1. 71, 1-11.

    Google Scholar 

  • Chalmers, J. M. and Dent, G. (1997) Industrial Analysis with Vibrational Spectroscopy, RCS.

  • Coalson, R. L., Day, A. and Marchessault, R. H. (1968) The structure of cellulose gels by light scattering and thin section electron microscopy. Holzforschung 22(6), 190-198.

    Google Scholar 

  • Comyn, J. (1985) Polymer Permeability. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Crank, J. (1975) The Mathematics of Diffusion. 2nd edn., Clarendon Press, Oxford.

    Google Scholar 

  • Ebrahimzadeh, P. R. and McQueen, D. H. (1998) A model of the dynamic mechanical responses of wood, paper and some polymers to moisture changes. J. Mat. Sci. 33, 1201-1209.

    Google Scholar 

  • Feldson, G. T. and Barbari, T. A. (1992) The use of FTIR-ATR spectroscopy to characterise penetrant diffusion in polymers. Polymer 34(6), 1146-1153.

    Google Scholar 

  • Fink, H-P., Purz, H. J. and Weigel, P. (1997) Structural aspects of new cellulosic materials. Das Papier 51(12), 643-652.

    Google Scholar 

  • Haskell, V. C. and Owens, D. K. (1960) The development of molecular orientation during formation of cellulose film from viscose. J. Appl. Poly. Sci. 4(11), 225-230.

    Google Scholar 

  • Hay, J. N. and Laity, P. R. (2000) Observations of water migration during thermoporometry studies of cellulose films. Polymer 41(16), 6171-6180.

    Google Scholar 

  • Hellstern, U. and Hoffmann, V. (1995) Diffusion in ultrathin films studied by time-resolved FTIR-ATR spectroscopy. J. Mol. Struct. 349, 329-332.

    Google Scholar 

  • Hermans, P. H. and Weidinger, A. (1949) X-ray studies of the crystallinity of cellulose. J. Poly. Sci. 4, 135-144.

    Google Scholar 

  • Hermans, P. H. and Weidinger, A. (1946) The hydrates of cellulose. J. Poly. Sci. 1, 185-193.

    Google Scholar 

  • Ho, W. S. W. and Sirkar, K. K. (eds.) (1992) The Membrane Handbook Van Nostrand Reinhold, New York.

    Google Scholar 

  • Hong, S. U., Barbari, T. A. and Sloan, J. M. (1998) Multicomponent diffusion of methyl ethyl ketone and toluene in polyisobutylene from vapour sorption FTIR-ATR spectroscopy. J. Poly. Sci. B. Poly. Phys. 36(2), 337-344.

    Google Scholar 

  • Irklei, V. M., Ochkivskii, A. P., Rabchenko, A. S. and Nosov, M. P. (1972) Electronmicroscopic studies of the structure of regenerated cellulose films. Vysokomol. Soedin. Ser. B. 14(9), 709-711.

    Google Scholar 

  • Jayme, G. and Balser, K. (1967a) Electron microscopical comparison of cuprammonium and viscose cellulose films. Das Papier 21(10A), 678-688.

    Google Scholar 

  • Jayme, G. and Balser, K. (1967b) Electron microscopic structure studies on regenerated cellulose films. Ind. Chim. Belge. 32, 365-372.

    Google Scholar 

  • Laity, P.R., Glover, P.M., Godward, J., McDonald, P.J. and Hay, J.N. (2000) Structural studies and diffusion measurements of water-swollen cellophane by NHR imaging. Cellulose (in print).

  • McKnight, S. H. and Gillespie, J. W. (1997) In situ examination of water diffusion to the polypropylene-silane interface using FTIR-ATR. J. Appl. Poly. Sci. 64(10), 1971-1985.

    Google Scholar 

  • Neogi, P. (ed.) (1996) Diffusion in Polymers. Marcel Dekker, New York.

    Google Scholar 

  • Newns, A. C. (1956) The sorption and desorption kinetics of water in a regenerated cellulose. Trans. Faraday Soc. 52, 1533-1545.

    Google Scholar 

  • Philipp, B., Baudisch, J. and Bohlmann, A. (1967) About the application of chemical accessibility methods to structural investigations of regenerated cellulose films. Faserforschung und Textiltechnik 18(11), 511-517.

    Google Scholar 

  • Sammon, C., Mura, C., Yarwood, J., Everall, N., Swart, R. and Hodge, D. (1988) FTIR-ATR studies of the structure and dynamics of water molecules in polymeric matrixes. A comparison of PET and PVC. J. Phys. Chem. B. 102 (18), 3402-3411.

    Google Scholar 

  • Semwal, R. P., Banerjee, S., Chauhan, L. R., Battacharya, A. and Rao, N. B. S. N. (1996) Study of diffusion and sorption of bis-(2-chloroethyl)sulphide (SM) and bis-(2-chloroethyl)ether (OM) through polypropylene (PP) and biaxially-oriented polypropylene (BOPP) films by the FTIR-ATR spectroscopic method. J. Appl. Poly. Sci. 60 (1), 29-35.

    Google Scholar 

  • Skourlis, T. P. and McCullough, R. L. (1994) Measurement of diffusivity of a liquid diamine in solid epoxies using attenuated total reflectance infrared spectroscopy (FTIR-ATR). J. Appl. Poly. Sci. 52(9), 1241-1248.

    Google Scholar 

  • Stratton, R. A. (1973) Dependence of the viscoelastic properties of cellulose on water content. J. Poly. Sci. Poly. Chem. Edn. 11, 535-544.

    Google Scholar 

  • Sutandar, P., Ahn, D. J. and Franses, E. I. (1994) FTIR-ATR analysis for microstructure and water-uptake I poly(methyl methacrylate) spin cast and Langmuir-Blodgett thin-films. Macromols 27(25), 7316-7328.

    Google Scholar 

  • UCB Group information (1999) Published on the company website http://www.films.ucbgroup. com/business/osmotics/content.htm

  • Veith, W. R. (1991) Diffusion in and Through Polymers. Hanser Publishers, New York.

    Google Scholar 

  • Wang, J. H., Robinson, C. V. and Edelman, I. S. (1953) Self-diffusion and structure of liquid water. III Measurement of self-diffusion of liquid water with 2H, 3H and 18O tracers. J. Am. Chem. Soc. 75, 466-470.

    Google Scholar 

  • Wellish, E., Gupta, M. K., Marker, L. and Sweeting, O. J. (1965) Fine structure of regenerated cellulose films as revealed by dye accessibility. J. Appl. Poly. Sci. 9, 2591-2606.

    Google Scholar 

  • Yano, S. and Hatakeyama, H. (1988) Dynamic viscoelasticity and structural changes of regenerated cellulose during water sorption. Polymer 29, 566-570.

    Google Scholar 

  • Yasuda, H., Lamaze, C. E. and Peterlin, A. (1971) Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. J. Poly. Sci. A-2 9, 1117-1131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laity, P.R., Hay, J. Measurement of Water Diffusion Through Cellophane Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Cellulose 7, 387–397 (2000). https://doi.org/10.1023/A:1009263118424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009263118424

Navigation