Skip to main content
Log in

Thermoplastic Xylan Derivatives with Propylene Oxide

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Polymeric xylan can be reacted with propylene oxide (PO) in aqueous alkali homogeneously. Since xylan is isolated from biomass in aqueous alkaline solution, an ‘in-line’ modification with PO as part of the isolation protocol, is most practical. Hydroxypropyl xylan (HPX) is a low molecular weight, branched, water-soluble polysaccharide with low intrinsic viscosity and thermoplasticity. Following peracetylation of HPX in formamide solution, water-insoluble acetoxypropyl xylan (APX) is formed that is also thermoplastic but no longer water soluble. The glass transition temperature (T g) of APX varies in relation to degree of substitution with hydroxypropyl groups (DSPO), and this is found to decline from 160 to 70°C as DSPO rises from 0.2 to 2.0. At a temperature above the T g of HPX a molecular reorganization is noted, and a faint transition due to melting (T m) is observed at 205°C. HPX thermally degrades with a weight loss maximum at 317°C, or approximately 60°C below that of a corresponding cellulose derivative. HPX forms clear films when solvent cast from aqueous solution. Films are higher in ultimate tensile strength and lower in toughness than corresponding cellulose derivative films. The properties of HPX and APX derivatives qualify this material as a potential biodegradable and thermoplastic additive to melt-processed plastics. Blend characteristics with polystyrene reveal a shear-thinning effect in melt and a plasticization effect in solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aspinall, G. O. (1959) Structural chemistry of the hemicelluloses. Advan. Carbohydrate Chem. 14, 429-468.

    Google Scholar 

  • Carson, J. F. and Maclay, W. D. (1948) Esters of lima bean pod and corn cob hemicelluloses. J. Amer. Chem. Soc. 70, 293-295.

    Google Scholar 

  • Carson, J. F. and Maclay, W. D. (1946) The acylation of polyuronides with formamide as a dispersing agent. J. Amer. Chem. Soc. 68, 1015-1017.

    Google Scholar 

  • Chesson, A. (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Animal Feed Sci. Technol. 21, 219-228.

    Google Scholar 

  • Croon, I. and Donetzhuber, A. (1963) Xanthation and dexanthation of some hemicellulose fractions. Tappi 46, 648-651.

    Google Scholar 

  • Eriksson, O. and Lindgren, B. O. (1977) About the linkage between lignin and hemicelluloses in wood. Svensk Papperstidn. 80, 59-63.

    Google Scholar 

  • Glasser, W. G., Ravindran, G., Jain, R. K., Samaranayake, G. and Todd, J. (1995) Comparative enzyme biodegradability of xylan, cellulose, and starch derivatives. Biotechnol. Progr. 11, 552-557.

    Google Scholar 

  • Glasser, W. G., Kaar, W. E., Jain, R. K. and Sealey, J. E. (2000) Isolation options for noncellulosic heteropolysaccharides. Cellulose 7(3), 299-317.

    Google Scholar 

  • Glaudemans, C. P. J. and Timell, T. E. (1958) The polysaccharides of white birch (Betula papyrifera). Svensk Papperstidn. 61, 1-9.

    Google Scholar 

  • Goring, D. A. I. (1968) Thermal softening of lignin, hemicellulose, and cellulose. Pulp Paper Mag. Can. 64(12), T517-T527.

    Google Scholar 

  • Hirst, E. L. (1962) The chemical structure of the hemicelluloses. Pure Appl. Chem. 5, 53-66.

    Google Scholar 

  • Horio, M. and Imamura, R. (1964) Crystallographic study of xylan from Wood. J. Polym. Sci. A-2, 627-644.

    Google Scholar 

  • Irvine, G. M. (1984) The glass transition of lignin and hemicellulose and their measurement by differential thermal analysis. Tappi 67(5), 118-121.

    Google Scholar 

  • Jeffries, T. W. (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1, 163-176.

    Google Scholar 

  • Kim, H. R. and Eliasson, A.-C. (1993) The influence of molar substitution on the thermal transition properties of hydroxypropyl potato starches. Carbohydrate Polym. 22, 31-35.

    Google Scholar 

  • Koshijima, T., Timell, T. E. and Zinbo, M. (1965) The number-average molecular weight of native hardwood xylans. J. Polym. Sci. C-11, 265-279.

    Google Scholar 

  • Lindberg, B. (1962) Recent advances in methods of isolating and purifying hemicelluloses. Pure Appl. Chem. 5, 67-75.

    Google Scholar 

  • Majewicz, T. G. and Podlas, T. J. (1993) Cellulose ethers, in Encycl. Chemical Technology. M. Howe-Grant, (ed.). 4th edn, vol. 5, Wiley, NY, pp. 541-563.

    Google Scholar 

  • Marchessault, R. H. and Settineri, W. J. (1964) Some comments on the crystallography of xylan hydrate. J. Polym. Sci. Polym. Letter 2, 1047-1051.

    Google Scholar 

  • Marchessault, R. H. and Liang, C. Y. (1962) The infrared spectra of crystalline polysaccharides. VIII. xylans. J. Polym. Sci. 59, 357.

    Google Scholar 

  • O'Malley, J. J. and Marchessault, R. H. (1966) Characterization of graft copolymers of methylated xylan and polystyrene. J. Phys. Chem. 70, 3235-3240.

    Google Scholar 

  • Ramiah, M. V. and Goring, D. A. I. (1965) The thermal expansion of cellulose, hemicellulose, and lignin. J. Polym. Sci. C-11, 27-48.

    Google Scholar 

  • Rexen, F. (1979) Low-quality forages improve with alkali treatment. Feedstuffs 51(42), 33-34.

    Google Scholar 

  • Rials, T. G. and Glasser, W. G. (1988) Thermal and dynamic mechanical properties of hydroxypropyl cellulose films. J. Appl. Polym. Sci. 36, 749-758.

    Google Scholar 

  • Russo, J. R. (1976) Xylitol: anti-carie sweetener? Food Engng 48(4), 77-79.

    Google Scholar 

  • Salmen, L. and Olsson, A.-M. (1998) Interaction between hemicelluloses, lignin and cellulose: structure-property relationships. J. Pulp Paper Sci. 24(3), 99-103.

    Google Scholar 

  • Schmorak, J. and Adams, G. A. (1957) The preparation and properties of carboxymethylxylan. Tappi 40, 378-383.

    Google Scholar 

  • Schweiger, R. G. (1976) Nitrite esters of polyhydroxy polymers. J. Org. Chem. 41, 90-93.

    Google Scholar 

  • Timell, T. E. (1964) Wood hemicellulose: Part I. Advan. Carbohydrate Chem. 19, 247-302.

    Google Scholar 

  • Timell, T. E., Glaudemans, C. P. J. and Gillham, J. K. (1959) Recent studies on the polysaccharides of white birch and other hardwoods. Tappi 42, 623-634.

    Google Scholar 

  • Vincendon, M. (1998) Xylan derivatives: Aromatic carbamates. Makromol. Chem. 194, 321-328; Xylan derivatives: Benzyl ethers, synthesis, and characterization. J. Appl. Polym. Sci. 67, 455-460.

    Google Scholar 

  • Whistler, R. L. and Daniel, J. R. (1983) Starch, In Encycl. Chemical Technology. H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, (eds). 3rd edn, vol. 21, Wiley, NY., pp. 492-507.

    Google Scholar 

  • Whistler, R. L. (1950) Xylan. Advan. Carbohydrate Chem. 5, 269-290.

    Google Scholar 

  • Wilkie, K. C. B. (1979) The hemicelluloses of grasses and cereals. Advan. Carbohydrate Chem. Biochem. 36, 215-264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R.K., Sjöstedt, M. & Glasser, W.G. Thermoplastic Xylan Derivatives with Propylene Oxide. Cellulose 7, 319–336 (2000). https://doi.org/10.1023/A:1009260415771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009260415771

Navigation