Skip to main content

Two‐dimensional step‐scan FTIR: a tool to unravel the OH‐valency‐range of the spectrum of Cellulose I

Abstract

This article presents the results of the first application of dynamic mechanical analysis (DMA) coupled with 2D step‐scan Fourier transform infrared (FTIR) spectroscopy, to cellulose. It is demonstrated that the broad hydroxyl infrared absorption band between 3700 and 3000 cm−1 in the cellulose infrared spectra could be separated into distinct bands by this dynamic rheo‐optical investigation using FTIR‐spectroscopy as detecting system. The responses of the OH‐groups to an external perturbation were recorded as in‐phase and out‐of‐phase spectra. The cross correlation of these spectra gave the 2D synchronous and asynchronous plots, which showed clearly separated bands in the OH‐vibration range and the relation of the OH‐groups to each other. It is demonstrated that it is possible to establish relations between the OH‐bands and the cellulose structure.

This is a preview of subscription content, access via your institution.

References

  • Bellamy, L. J. (1975) The infra-red spectra of complex molecules. Chapman and Hall, London p.108.

    Google Scholar 

  • Fengel, D. (1992) Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung 46(4): 283–288.

    Google Scholar 

  • Fengel, D. (1993) The application of FTIR spectroscopy in cellulose research. In Cellulosics: Chemical, Biochemical and Material Aspects J. F. Kennedy, G. O. Phillips and P. A. Williams (eds). New York, London, Toronto, Sydney, Tokyo, Singapore, Ellis Horwood: pp. 135–140.

    Google Scholar 

  • Fengel, D. (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47, 103–108.

    Google Scholar 

  • Fengel, D. (1993) Neuere erkenntnisse über die feinstruktur der cellulose. Das Papier 12, 695–702.

    Google Scholar 

  • Fengel, D. and Ludwig, M. (1991) Möglichkeiten und grenzen der FTIR-spektroskopie bei der charakterisierung von cellulose. Das Papier 45(2), 45–51.

    Google Scholar 

  • Gardner, K.H. and Blackwell, J. (1974). The structure of native cellulose. J. Biopolymers 13, 1975

    Google Scholar 

  • Gregoriou, V. G., Noda, I., Dowrey, A. E., Marcott, C. and Chao, J. L. (1993) Dynamic rheo-optical characterization of a low-density polyethylene/perdeuterated high-density polyethylene blend by two dimensional step-scan FTIR spectroscopy. J. Polym. Sci. Part B: Polym Phys 31, 1769–1777.

    Google Scholar 

  • Ivanova, N.V., Korolenko, E.A., Korolik, E. V. and Zbankov, R. G. (1989) Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51, 301–306.

    Google Scholar 

  • Kauppinen, J.K., Moffatt, D. J., Mantsch, H. H. and Cameron, D. G. (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Applied Spectroscopy 35(3), 271–276.

    Google Scholar 

  • Kondo, T. (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4, 281–292.

    Google Scholar 

  • Lennholm, H., Larsson, T. and Iversen, T. (1994) Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydrate Research 261, 119–131.

    Google Scholar 

  • Liang, C. Y. and Marchessault, R. H. (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polyme. Sci. 37, 385–395.

    Google Scholar 

  • Mann, J. and Marrinan, H. J. (1956) The reaction between cellulose and heavy water. Part 2. Measurement of absolute accessibility and crystallinity. J. the Chem. Soc. Faraday Transactions. I 52, 487–492.

    Google Scholar 

  • Mann J. and Marrinan H.J. (1958) Crystalline modification of cellulose PartII: A study with plan polarized infrared radiation. J. Polym. Sci. 32, 357–370.

    Google Scholar 

  • Marcott, C., Dowrey, A. E. and Noda, I. (1994) Dynamic two-dimensional IR spectroscopy. Anal. Chem. 66(1), 1065–1075.

    Google Scholar 

  • Marchessault, R. H. (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry 5, 107–129.

    Google Scholar 

  • Michell, A. J. (1990) Second-derivative FT-IR spectra of native celluloses. Carbohydrate Res 197, 53–60.

    Google Scholar 

  • Noda, I. (1989) Two-dimensional infrared spectroscopy. J. Amer. Chem. Soc. 111, 8116–8118.

    Google Scholar 

  • Noda, I. (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Applied Spectroscopy 44(4), 550–561.

    Google Scholar 

  • Noda, I. (1993) Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Applied Spectroscopy 47(9), 1329–1336.

    Google Scholar 

  • Noda, I., Dowrey, A. E. and Marcott, C. (1983) Dynamic infrared linear dichroism of polymer films under oscillatory deformation. J. Polym. Sci., Polym. Letters Ed. 21, 99–103.

    Google Scholar 

  • Noda, I., Dowrey, A. E. and Marcott, C. (1988) A spectrometer for measuring time-resolved infrared linear dichroism induced by a small-amplitude oscillatory strain. Applied Spectroscopy 42(2), 203–216.

    Google Scholar 

  • Noda, I., Dowrey, A. E. and Marcott, C. (1988) Two-dimensional infrared (2D IR) spectroscopy. A new tool for interpreting infrared spectra. Mikrchimica Acta (Wien) 1, 101–103.

    Google Scholar 

  • Noda, I., Dowrey, A. E. and Marcott, C. (1992) Two-dimensional infrared (2D IR) spectroscopy based on a time-resolved IR measurement. In Time Resolved Vibrational Spectroscopy (V. H. Takahashi (ed.)) Berlin-Heidelberg, Springer-Verlag. Vol 68, 331–334.

    Google Scholar 

  • O'Sullivan, A. C. (1997) Cellulose: The structure slowly unravels. Cellulose 4, 173–207.

    Google Scholar 

  • Palmer, R. A. (1993) Step-scan FT-IR;A versatile tool for time-and phase-resolved vibrational spectroscopy. Spectroscopy 8(2), 26–34.

    Google Scholar 

  • Palmer, R. A., Manning, C. J., Chao, J. L., Noda, I., Dowrey, A. E. and Marcott, C. (1991) Application of step-scan interferometry to two-dimensional fourier transform infrared (2D FT-IR) correlation spectroscopy. Applied Spectroscopy 45(1), 12–17.

    Google Scholar 

  • Rånby, B. (1964) Kristallinität, accessibilität und wasserstoffbrücken-bindungen in cellulose und holz. Das Papier 18(10a), 593–600.

    Google Scholar 

  • Scherzer, T. (1996) Characterization of the molecular deformation behavior of glassy epoxy resins by rheo-optical FTIR spectrscopy. J. Polym. sci.: Part B: Polym. Phys. 34, 459–470.

    Google Scholar 

  • Scherzer, T. (1996) FTIR-rheo-optical characterization of the molecular orientation behaviour of amine cured epoxy resins during cyclic deformation. Polymer 37(26), 5807–5816.

    Google Scholar 

  • Siesler, H., Krässig, H., Grass, F., Kratzl, K. and Derkosch, J. (1975) Strukturuntersuchungen an cellulosefasern verschiedenenen verstreckungsgrades mittels IR-reflexionsspektroskopie und deuteriumaustausch. Die Angewandte Makromolekulare Chemie 42(622), 139–165.

    Google Scholar 

  • Siesler, H. W. (1992) The characterization of polymer deformation by Rheo-optical Fourier transform infrared spectroscopy. Makromolecular chemistry, Macromolecular Symposium. 53, 89–103.

    Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991) Combined infrared and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466.

    Google Scholar 

  • Sun, R., Lawther, J. M. and Banks, W. B. (1997) Time-resolved step-scan fourier transform infrared spectroscopy of triplet excited duroquinone in a zeolite. J. Phys. Chem. B 101, 205–209.

    Google Scholar 

  • Tashiro, K. and Kobayashi, M. (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of Hydrogen Bonds. Polymer 32(8), 1516–1526.

    Google Scholar 

  • Tsuboi, M. (1957) Infrared spectrum and crystal structure of cellulose. J. Polym. Sci. 25, 159–171.

    Google Scholar 

  • VanderHart, D. L. and R. H. Atalla (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17, 1465–1472.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for valonia cellulose by annealing at high temperatures. Macromolecules 26, 1313–1317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hinterstoisser, B., Salmén, L. Two‐dimensional step‐scan FTIR: a tool to unravel the OH‐valency‐range of the spectrum of Cellulose I. Cellulose 6, 251–263 (1999). https://doi.org/10.1023/A:1009225815913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009225815913