Abstract
This article presents the results of the first application of dynamic mechanical analysis (DMA) coupled with 2D step‐scan Fourier transform infrared (FTIR) spectroscopy, to cellulose. It is demonstrated that the broad hydroxyl infrared absorption band between 3700 and 3000 cm−1 in the cellulose infrared spectra could be separated into distinct bands by this dynamic rheo‐optical investigation using FTIR‐spectroscopy as detecting system. The responses of the OH‐groups to an external perturbation were recorded as in‐phase and out‐of‐phase spectra. The cross correlation of these spectra gave the 2D synchronous and asynchronous plots, which showed clearly separated bands in the OH‐vibration range and the relation of the OH‐groups to each other. It is demonstrated that it is possible to establish relations between the OH‐bands and the cellulose structure.
This is a preview of subscription content, access via your institution.
References
Bellamy, L. J. (1975) The infra-red spectra of complex molecules. Chapman and Hall, London p.108.
Fengel, D. (1992) Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung 46(4): 283–288.
Fengel, D. (1993) The application of FTIR spectroscopy in cellulose research. In Cellulosics: Chemical, Biochemical and Material Aspects J. F. Kennedy, G. O. Phillips and P. A. Williams (eds). New York, London, Toronto, Sydney, Tokyo, Singapore, Ellis Horwood: pp. 135–140.
Fengel, D. (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47, 103–108.
Fengel, D. (1993) Neuere erkenntnisse über die feinstruktur der cellulose. Das Papier 12, 695–702.
Fengel, D. and Ludwig, M. (1991) Möglichkeiten und grenzen der FTIR-spektroskopie bei der charakterisierung von cellulose. Das Papier 45(2), 45–51.
Gardner, K.H. and Blackwell, J. (1974). The structure of native cellulose. J. Biopolymers 13, 1975
Gregoriou, V. G., Noda, I., Dowrey, A. E., Marcott, C. and Chao, J. L. (1993) Dynamic rheo-optical characterization of a low-density polyethylene/perdeuterated high-density polyethylene blend by two dimensional step-scan FTIR spectroscopy. J. Polym. Sci. Part B: Polym Phys 31, 1769–1777.
Ivanova, N.V., Korolenko, E.A., Korolik, E. V. and Zbankov, R. G. (1989) Mathematical processing of IR-spectra of cellulose. Zurnal Prikladnoj Spektroskopii 51, 301–306.
Kauppinen, J.K., Moffatt, D. J., Mantsch, H. H. and Cameron, D. G. (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Applied Spectroscopy 35(3), 271–276.
Kondo, T. (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4, 281–292.
Lennholm, H., Larsson, T. and Iversen, T. (1994) Determination of cellulose Iα and Iβ in lignocellulosic materials. Carbohydrate Research 261, 119–131.
Liang, C. Y. and Marchessault, R. H. (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polyme. Sci. 37, 385–395.
Mann, J. and Marrinan, H. J. (1956) The reaction between cellulose and heavy water. Part 2. Measurement of absolute accessibility and crystallinity. J. the Chem. Soc. Faraday Transactions. I 52, 487–492.
Mann J. and Marrinan H.J. (1958) Crystalline modification of cellulose PartII: A study with plan polarized infrared radiation. J. Polym. Sci. 32, 357–370.
Marcott, C., Dowrey, A. E. and Noda, I. (1994) Dynamic two-dimensional IR spectroscopy. Anal. Chem. 66(1), 1065–1075.
Marchessault, R. H. (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry 5, 107–129.
Michell, A. J. (1990) Second-derivative FT-IR spectra of native celluloses. Carbohydrate Res 197, 53–60.
Noda, I. (1989) Two-dimensional infrared spectroscopy. J. Amer. Chem. Soc. 111, 8116–8118.
Noda, I. (1990) Two-dimensional infrared (2D IR) spectroscopy: theory and applications. Applied Spectroscopy 44(4), 550–561.
Noda, I. (1993) Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Applied Spectroscopy 47(9), 1329–1336.
Noda, I., Dowrey, A. E. and Marcott, C. (1983) Dynamic infrared linear dichroism of polymer films under oscillatory deformation. J. Polym. Sci., Polym. Letters Ed. 21, 99–103.
Noda, I., Dowrey, A. E. and Marcott, C. (1988) A spectrometer for measuring time-resolved infrared linear dichroism induced by a small-amplitude oscillatory strain. Applied Spectroscopy 42(2), 203–216.
Noda, I., Dowrey, A. E. and Marcott, C. (1988) Two-dimensional infrared (2D IR) spectroscopy. A new tool for interpreting infrared spectra. Mikrchimica Acta (Wien) 1, 101–103.
Noda, I., Dowrey, A. E. and Marcott, C. (1992) Two-dimensional infrared (2D IR) spectroscopy based on a time-resolved IR measurement. In Time Resolved Vibrational Spectroscopy (V. H. Takahashi (ed.)) Berlin-Heidelberg, Springer-Verlag. Vol 68, 331–334.
O'Sullivan, A. C. (1997) Cellulose: The structure slowly unravels. Cellulose 4, 173–207.
Palmer, R. A. (1993) Step-scan FT-IR;A versatile tool for time-and phase-resolved vibrational spectroscopy. Spectroscopy 8(2), 26–34.
Palmer, R. A., Manning, C. J., Chao, J. L., Noda, I., Dowrey, A. E. and Marcott, C. (1991) Application of step-scan interferometry to two-dimensional fourier transform infrared (2D FT-IR) correlation spectroscopy. Applied Spectroscopy 45(1), 12–17.
Rånby, B. (1964) Kristallinität, accessibilität und wasserstoffbrücken-bindungen in cellulose und holz. Das Papier 18(10a), 593–600.
Scherzer, T. (1996) Characterization of the molecular deformation behavior of glassy epoxy resins by rheo-optical FTIR spectrscopy. J. Polym. sci.: Part B: Polym. Phys. 34, 459–470.
Scherzer, T. (1996) FTIR-rheo-optical characterization of the molecular orientation behaviour of amine cured epoxy resins during cyclic deformation. Polymer 37(26), 5807–5816.
Siesler, H., Krässig, H., Grass, F., Kratzl, K. and Derkosch, J. (1975) Strukturuntersuchungen an cellulosefasern verschiedenenen verstreckungsgrades mittels IR-reflexionsspektroskopie und deuteriumaustausch. Die Angewandte Makromolekulare Chemie 42(622), 139–165.
Siesler, H. W. (1992) The characterization of polymer deformation by Rheo-optical Fourier transform infrared spectroscopy. Makromolecular chemistry, Macromolecular Symposium. 53, 89–103.
Sugiyama, J., Persson, J. and Chanzy, H. (1991) Combined infrared and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466.
Sun, R., Lawther, J. M. and Banks, W. B. (1997) Time-resolved step-scan fourier transform infrared spectroscopy of triplet excited duroquinone in a zeolite. J. Phys. Chem. B 101, 205–209.
Tashiro, K. and Kobayashi, M. (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of Hydrogen Bonds. Polymer 32(8), 1516–1526.
Tsuboi, M. (1957) Infrared spectrum and crystal structure of cellulose. J. Polym. Sci. 25, 159–171.
VanderHart, D. L. and R. H. Atalla (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17, 1465–1472.
Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for valonia cellulose by annealing at high temperatures. Macromolecules 26, 1313–1317.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hinterstoisser, B., Salmén, L. Two‐dimensional step‐scan FTIR: a tool to unravel the OH‐valency‐range of the spectrum of Cellulose I. Cellulose 6, 251–263 (1999). https://doi.org/10.1023/A:1009225815913
Issue Date:
DOI: https://doi.org/10.1023/A:1009225815913