Skip to main content
Log in

A native cellulose microfibril model

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

To aid in the understanding of cellulose ultrastructure, computer modelling has been employed to create a model of monoclinic (Iβ) native cellulose. This was achieved by building a chain of cellulose, which was used in a two chain unit cell. An energy minimized microfibril model was created from several of these unit cells. A major advantage of this model is that it is a large scale unconstrained, isolated system. Thus, it facilitates the study of surface as well as central chains and provides a working model of a cellulose microfibril. An extensive analysis was carried out of intermolecular non-bond interactions and how they might contribute to the stability of the structure of crystalline native cellulose. 0969--0239 © 1998 Blackie Academic & Professional

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arnott, A. and Scott, W. E. (1972) Accurate X-ray diffraction analysis of fibrous polysaccharides containing pyranose rings. Part 1. The linked-atom approach. Journal of the Chemical Society Perkin II, 324–335.

    Google Scholar 

  • Brett, C. and Waldron, K. (1990) In Physiology and Biochemistry of Plant cell walls London: Unwin Hyman, pp. 72.

    Google Scholar 

  • Cerius. Molecular Simulations Incorporated, The Quorum, Cambridge, UK.

  • Chanzy, H. (1987) Aspects of Cellulose Structure. Proceedings of the International Symposium on Wood and Pulp chemistry 1, 235–242.

    Google Scholar 

  • Chanzy, H. (1990) Recent results in the structure and morphology of cellulose. Cellulose Sources and Exploitation: Industrial Utilisation Biotechnology and Physico-chemical Properties (J. F. Kennedy, G. O. Phillips, and P. A. Williams eds). Chichester, UK: Ellis Horwood, pp. 3–12.

    Google Scholar 

  • Chu, S. S. C. and Jeffrey, G. A. (1968) The refinement of the Crystal structure of β-D-Glucose and Cellobiose. Acta Crystallographica B24, 830–838.

    Google Scholar 

  • De Vries, N. K. and Buck, H. M. (1987) Different rotamer populations around the C5—C6 bond for α-and β-D-galactopyranosides through the combined interaction of the gauch and anomeric effects: A 300-MHz 1H-NMR and MNDO study. Carbohydrate Research 165, 1–16.

    Google Scholar 

  • French, A. D. and Dowd, M. K. (1993) Exploration of disaccharide conformation by molecular mechanics. Journal of Molecular Structure (Theochemistry) 286, 183–210.

    Google Scholar 

  • French, A. D., Miller, D. P. and Aabloo, A. (1993) Minature crystal models of cellulose polymorphs and other carbohydrates. International Journal of Biological Macromolecules 15, 30–36.

    Google Scholar 

  • Frey-Wyssling, A. and Muhlethaler, K. (1951) The fine structure of native cellulose. Biopolymers 13, 1975–2001.

    Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974) The Structure of Native Cellulose. Biopolymers 13, 1975–2001.

    Google Scholar 

  • Heiner, A. P., Sugiyama, J. and Teleman, O. (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohydrate Research 273, 207–223.

    Google Scholar 

  • Hermans, P. H. and Weidinger, A. J. (1949) Physics and Chemistry of Cellulose Fibres. New York: Elsevier.

    Google Scholar 

  • Kroon-Batenburg, L. M. J. and Kroon, J. (1990) Solvent effect on the conformation of the hydroxymethyl groups established by molecular dynamics simulations of methyl-β-D-glucoside in water. Biopolymers 29, 12423–1248.

    Google Scholar 

  • Kroon-Batenburg, L. M. J. et al. (1996).

  • Liang, C. Y. and Marchessault, R. H. (1959) Infrared spectra of Crystalline Polysaccharides. I. Hydrogen bonds in Native Cellulose. Journal of Polymer Science 37, 385–395.

    Google Scholar 

  • Mann, J. and Marrinan, H. J. (1958) Crystalline Modifications of Cellulose. Part II. A study with Plane-Polarised infrared radiation. Journal of Polymer Science 32, 357–370.

    Google Scholar 

  • Marchessault, R. H. and Liang, C. Y. (1960) Infrared spectra of crystalline polysaccharides. III. Mercerized Cellulose. Journal of Polymer Science 43, 71–84.

    Google Scholar 

  • Mayo, S. L., Olafson, B. P. and Goddard, W. A. (1990) Dreiding — A Generic Force-Field for Molecular-Simulation. Journal of Physical Chemistry 94, 8897–8909.

    Google Scholar 

  • Meyer, K. H. and Misch, L. (1937) Positions des atomes dans le nouveau modèle spatial de la cellulose. Helvetica Chimica Acta 20, 232–245.

    Google Scholar 

  • Millane, R. P. and Narusiah, T. V. (1989) An X-ray fiber diffraction study of ramie cellulose. I. in Cellulose and Wood. Chemistry and Technology, Proceedings of the Tenth Cellulose Conference (C. Schuerch, ed.) New York: John Wiley and Sons, pp. 139–157.

    Google Scholar 

  • O'Sullivan, A. C. (1995) Modelling of cellulose-molecule interactions. PhD thesis. University of Wales, Bangor, Gwynedd, UK.

    Google Scholar 

  • O'Sullivan, A. C. (1997) Cellulose: The structure slowly unravels. Cellulose 4, 173–207.

    Google Scholar 

  • Preston, R. D. (1974).

  • Preston, R. D. (1975) X-Ray analysis and the structure of the components of plant cell walls. Physics Reports 21, 183–226.

    Google Scholar 

  • Rappé, A. K., Casewitt, C. J., Colwell, K. S., Goddard, W. A. and Skiff, W. M. (1991) Charge equilibrium for molecular dynamics simulations. Journal of Physics and Chemistry 95, 3358–3363.

    Google Scholar 

  • Rees, D. A. and Thom, D. (1977) Polysaccharide Conformation Part 10. Solvent and Temperature Effects on the Optical Rotation and conformation of Model Carbohydrates. Journal of the Chemical Society, Perkin Transactions II, 191–201.

    Google Scholar 

  • Sarko, A. and Muggli, R. (1974) Packing analysis of carbohydrates and polysaccharides. III Valonia cellulose and cellulose II. Macromolecules 7, 486–496.

    Google Scholar 

  • Shefter, E. and Trublood, K. N. (1965) The crystal and molecular structure of (+)-barium uridine-5I-phosphate. Acta Crystallographica 18, 1067–1077.

    Google Scholar 

  • Simon, I., Glasser, L., Scheraga, H. A. and Manley, R. St. J. (1988) Structure of cellulose. 2. Low energy crystalline arrangements. Acta Crystallographica 21, 990–998.

    Google Scholar 

  • Stipanovic, A. J. and Sarko, A. (1976) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 19, 851–857.

    Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991) Combined IR and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24, 2461–2466.

    Google Scholar 

  • Sundaralingam, M. (1968) Some aspects of stereochemistry and hydrogen bonding of carbohydrates related to polysaccharide conformations. Biopolymers 16, 189–213.

    Google Scholar 

  • Takahashi, Y. and Matsunaga, H. (1991) Crystal structure of native cellulose. Macromolecules 24, 3968–3969.

    Google Scholar 

  • Tsekos, I., Reiss, H. D. and Schrepf, E. (1993) Cell-wall structure and supramolecular organisation of the plasma membrane of marine red algae visualised by freeze-fracture. Acta Botanica Neerlandica 42, 119–132.

    Google Scholar 

  • Tsuboi, M. (1957) Infrared Spectrum and Crystal Structure of Cellulose. Journal of Polymer Science 25, 159–171.

    Google Scholar 

  • Vanderhart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid state C-13 nmr. Macromolecules 17, 1465–1472.

    Google Scholar 

  • Verhlac, C., Dedier, J. and Chanzy, H. (1990) Availability of surface hydroxyl groups in Valonia and bacterial cellulose. Journal of Polymer Science: Part A. Polymer Chemistry 28, 1171–1177.

    Google Scholar 

  • Wellard, H. J. (1954) Variation in the lattice spacing of cellulose. Journal of Polymer Science 13, 471–476.

    Google Scholar 

  • Woodcock, C. and Sarko, A. (1980) Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of Native Ramie Cellulose. Macromolecules 13, 1183–1187.

    Google Scholar 

  • Woodcock, S., Henrissat, B. and Sugiyama, J. (1995) Docking of Congo Red to the Surface of Crystalline Cellulose Using Molecular Mechanics. Biopolymers 36, 201–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAIRD, M.S., O'SULLIVAN, A.C. & BANKS, W.B. A native cellulose microfibril model. Cellulose 5, 89–111 (1998). https://doi.org/10.1023/A:1009220830595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009220830595

Keywords

Navigation