Skip to main content
Log in

Structure and Organization of the rDNA Intergenic Spacer in Lake Trout (Salvelinus namaycush)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

A total-genomic cosmid library was created to isolate complete copies of the rDNA cistron of lake trout (Salvelinus namaycush) in order to study the structure and organization of the intergenic spacer (IGS) in this species. A total of 60 rDNA- positive clones (average inserts > 25 kb) was recovered by screening the library with a rDNA-specific probe. Positive clones were assayed for the presence of the two internal rDNA spacers (ITS-1 and ITS-2) and the entire IGS fragment was successfully amplified from 42 clones by PCR. Length of the IGS fragments ranged from 9.4 to 17.8 kb. Comparative restriction mapping of the IGS–PCR products of several clones indicated two regions of extensive length variation surrounding a central region with sequence conservation. DNA sequence analysis was used to investigate the molecular basis of the IGS length variation and focused on identifying the region responsible for this variation. Over 9 kb of DNA sequence was obtained for one clone (A1) with a total IGS length of approximately 12.4 kb. Sequence of a conserved central region contained two open reading frames and a number of short direct repeats. Length variation in the IGS was determined by RFLP to result from differences in the number of copies of repetitive DNA sequences. These included an 89-bp tandem repeat (α repeats), an 82-bp element (β repeats), a 168–177-bp element (S repeats), and a 179–201-bp element (δ repeats). Overall nucleotide composition of the IGS was biased towards A and T (%GC = 47.4). Maintenance of discrete rDNA-length variants in lake trout suggests that the rate of gene conversion is insufficient to produce homogeneous copies across the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya CT, Gold JR (1986) Chromomycin A3 stains nucleolar organizer regions of fish chromosomes. Copeia 1986: 226–231.

    Google Scholar 

  • Andronico FS, De Lucchini F, Granziani F, Nardi I, Batistoni R, Barasacchi-Pilone G (1985) Molecular organization of ribosomal RNA genes clustered at variable chromosomal sites in Triturus vulgaris meridionalis (Amphibia, Urodela). J Mol Biol 186: 212–229

    Google Scholar 

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK, eds. Evolution of Genes and Proteins, Sunderland, MA: Sinauer Associates, p. 38.

    Google Scholar 

  • Arnheim N, Treco D, Taylor B, Eicher E (1982) Distribution of ribosomal gene length variants among mouse chromosomes. Proc Natl Acad Sci USA 79: 4677–4680.

    PubMed  Google Scholar 

  • Baldridge GD, Dalton MW, Fallon AM (1992) Is higher-order structure conserved in eukaryotic ribosomal DNA intergenic spacers? J Mol Evol 35: 514–523.

    PubMed  Google Scholar 

  • Castro J, De Lucchini S, Nardi I, Sanchez L, Martinez P (1997) Molecular analysis of NOR site polymorphism in brown trout (Salmo trutta): organization of rDNA intergenic spacers. Genome 40: 916–922.

    Google Scholar 

  • Childs G, Maxson R, Cohn RH, Kedes L (1981) Orphons: dispersed genetic elements derived from tandem repetitive genes of eukaryotes. Cell 23: 651–663.

    PubMed  Google Scholar 

  • Cortadas J, Pavon MC (1982) The organization of the ribosomal genes in vertebrates. EMBO J 1: 1075–1080.

    PubMed  Google Scholar 

  • Crease TJ (1995) Ribosomal DNA evolution at the population level: nucleotide variation in intergenic spacer arrays of Daphnia pulex. Genetics 141: 1327–1337.

    PubMed  Google Scholar 

  • Dvorak J, Jue D, Lassner M (1987) Homogenization of tandemly repeated sequences by distance-dependent nucleotide sequence conversion. Genetics 116: 487–498.

    PubMed  Google Scholar 

  • Foote DL, Wiley JE, Little ML, Meyne J (1991) Ribosomal RNA gene site polymorphism in Bufo terrestris. Cytogenet Cell Genet 57: 196–199.

    PubMed  Google Scholar 

  • Frolov SV (1995) Comparative karyology and karyotype evolution of chars. J Ichthyol 35: 14–23.

    Google Scholar 

  • Garkatsev IV, Tsvetkova TG, Yegolina NA, Gudkov AV (1988) Variability of the human rRNA genes: inheritance and nonrandom chromosomal distribution of structural variants of nontranscribed spacer sequences. Hum Genet 81: 31–37.

    PubMed  Google Scholar 

  • Gerbi SA (1985) Evolution of ribosomal DNA. In: MacIntyre RJ, ed. Molecular Evolutionary Genetics, Chapter 7. New York: Plenum Press, p 419.

    Google Scholar 

  • Goodier JL, Davidson WS (1993) A repetitive element in the genome of Atlantic salmon, Salmo salar. Gene 131: 237–242.

    PubMed  Google Scholar 

  • Hartley SE, Davidson WS (1994) Characterization and distribution of genomic repeat sequences from Arctic charr (Salvelinus alpinus). In: Beaumont AR, ed. Genetics and Evolution of Aquatic Organisms, London: Chapman Hall, p 271.

    Google Scholar 

  • Heix J, Grummt I (1995) Species specificity of transcription by RNA polymerase I. Curr Opin Genet Devel 5: 652–656.

    Google Scholar 

  • Hillis DM, SK Davis (1986) Evolution of ribosomal DNA: fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275–1288.

    Google Scholar 

  • Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251: 308–310.

    PubMed  Google Scholar 

  • Kuhn A, Grummt I (1987) A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J 6: 3487–3492.

    PubMed  Google Scholar 

  • Kuhn A, Deppert U, Grummt I (1990) A 140-base pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system. Proc Natl Acad Sci USA 87: 7527–7531.

    PubMed  Google Scholar 

  • Le HL, Lecointre G, Perasso R (1993) A 285 rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based aladograms. Mol. Phylogenet Evol 2: 31–51.

    PubMed  Google Scholar 

  • Mindell DP, Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Ann Rev Ecol Syst 21: 541–566.

    Google Scholar 

  • Moran P, Reed KM, Oakley TH, Phillips RB, Garcia-Vazquez E, Pendas AM (1997) Physical localization and characterization of the Bgl I element in the genome of Atlantic salmon (Salmo salar L.) and brown trout (S. trutta). Gene 194: 9–18.

    PubMed  Google Scholar 

  • Phillips RB, Ihssen PE (1985) Chromosome banding in salmonid fish: nucleolar organizer regions in Salmo and Salvelinus. Can J Genet Cytol 27: 433–440.

    PubMed  Google Scholar 

  • Phillips RB, KA Pleyte (1991) Nuclear DNA and salmonid pylogenetics. J Fish Biol 39S: 259–275.

    Google Scholar 

  • Phillips RB, Ihssen PE, Utter FM (1986) Chromosome banding in salmonid fishes: nucleolar organizers in Oncorhynchus. Can J Genet Cytol 28: 502–510.

    PubMed  Google Scholar 

  • Phillips RB, Pleyte KA, Hartley SE (1988) Stock-specific differences in the number and chromosome positions of the nucleolar organizer regions in Arctic char (Salvelinus alpinus). Cytogenet Cell Genet 48: 9–12.

    Google Scholar 

  • Phillips RB, Pleyte KA, Ihssen PE (1989a) Patterns of chromosomal nucleolar organizer (NOR) variation in fishes of the genus Salvelinus. Copeia 1989: 47–53.

    Google Scholar 

  • Phillips RB, Zajicek KD, Ihssen PE (1989b) Population differences in chromosome-banding polymorphisms in lake trout. Trans Am Fish Soc 118: 64–73.

    Google Scholar 

  • Phillips RB, Pleyte KA, Brown MR (1992) Salmonid phylogeny inferred from ribosomal DNA restriction maps. Can J Fish Aquat Sci 49: 2345–2353.

    Google Scholar 

  • Popodi EM, Greve D, Phillips RB, Wejksnora PJ (1985) The ribosomal RNA genes of three salmonid species. Biochem Genet 23: 997–1010.

    PubMed  Google Scholar 

  • Reed KM, Phillips RB (1995a) Molecular cytogenetic analysis of the double-CMA3 chromosome of lake trout, Salvelinus namaycush. Cytogenet Cell Genet 70: 104–107.

    PubMed  Google Scholar 

  • Reed KM, Phillips RB (1995b) Molecular characterization and cytogenetic analysis of highly repeated DNAs of lake trout, Salvelinus namaycush. Chromosoma 104: 242–251.

    PubMed  Google Scholar 

  • Reed KM, Phillips RB (1997) Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res 5: 221–227.

    PubMed  Google Scholar 

  • Reed KM, Oakley TH, Phillips RB (1997) An Alu I fragment isolated from lake trout (Salvelinus namaycush), maps to the intergenic spacer region of the rDNA cistron. Gene 186: 7–11.

    PubMed  Google Scholar 

  • Schmid M, Feichtinger W, Weimer R, Mais C, Bolanos F, Leon P (1995) Chromosome banding in amphibia. XXI. Inversion polymorphism and multiple nucleolus organizer regions in Agalchnis callidryas (Anura, Hylidae). Cytogenet Cell Genet 69: 18–26.

    PubMed  Google Scholar 

  • Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae s. lat.)?-Inferences from the specificity of silver staining. Plant Syst Evol 144: 291–305.

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping of nucleolus organizing regions in Allium. Chromosoma 92: 143–148.

    Article  Google Scholar 

  • Sola L, Monaco PJ, Rasch EM (1990) Cytogenetics of bisexual/unisexual species of Poecilia. I. C-bands, Ag-NOR polymorphisms, and sex chromosomes in three populations of Poecilia latipinna. Cytogenet Cell Genet 53: 148–154.

    PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503.

    PubMed  Google Scholar 

  • Suzuki H, Miyashita N, Moriwaki K et al. (1986) Evolutionary implication of heterogeneity of the nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculus. Mol Biol Evol 3: 126–137.

    PubMed  Google Scholar 

  • Syvanen M (1984) The evolutionary implications of mobile genetic elements. Ann Rev Genet 18: 271–273.

    PubMed  Google Scholar 

  • Tanhauser SM, Hauswirth WW, Laipis PJ (1986) Conserved restriction sites within the ribosomal RNA genes of vertebrates. Biochem Biophy Acta 866: 19–25.

    Google Scholar 

  • Wiley JE, Little ML, Romano MA, Blount DA, Cline GR (1989) Polymorphism in the location of the 18S and 28S rRNA genes on the chromosomes of the diploid-tetraploid treefrogs Hyla chrysoscelis and H. versicolor. Chromosoma 97: 481–487.

    Google Scholar 

  • Williams SM, DeSalle R, Strobeck C (1985) Homogenization of geographical variants at the nontranscribed spacer of rDNA in Drosophila mercatorum. Mol Biol Evol 2: 338–346.

    PubMed  Google Scholar 

  • Zhuo L, Sajdak SL, Phillips RB (1994) Minimal intraspecific variation in the sequence of the transcribed spacer regions of the ribosomal DNA of lake trout (Salvelinus namaycush). Genome 37: 664–671.

    PubMed  Google Scholar 

  • Zhuo L, Reed KM, Phillips RB (1995) Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush). Genome 38: 487–496.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, K.M., Phillips, R.B. Structure and Organization of the rDNA Intergenic Spacer in Lake Trout (Salvelinus namaycush). Chromosome Res 8, 5–16 (2000). https://doi.org/10.1023/A:1009214800251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009214800251

Navigation