Skip to main content
Log in

Comparative XANES study of serotransferrin and ovotransferrin at Cu K-edge: evidence of interactions among the metal sites

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The Cu site structure of human serotransferrin and hen ovotransferrin using XANES spectroscopy has been investigated. Although the transferrin family proteins have been extensively studied, the results reported herein are the first concerning the structure of the metal site in C-terminal and N-terminal in the whole protein. Our structural data show that these proteins differ with regard to the independence of the two binding sites and the geometry of copper coordination, ranging from a poorly to a significantly distorted octahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aisen P, Harris DC. 1989 In: Loehr TM, Gray HB, Lever ABP, eds. Iron Carriers and Iron Proteins. Weinheim: VCH Verlags-gesellschaft: 239–350.

  • Aisen P, Leibam A, Zweier J. 1978 Stoichiometric and site characteristic of the binding of iron to human transferrin. J Biol Chem 253, 1930–1937.

    Google Scholar 

  • Alagna L, Strange RW, Druham P, Hasnain SS.1986 Stereochemistry of copper in superoxide dismutase in solution from X-ray absorption near edge structures (XANES). J Phys C8 47, 62–73.

    Google Scholar 

  • Baker EN, Lindley PF.1992 New perspectives on the structure and function of transferrin. J Inorg Biochem 47, 147–160.

    Google Scholar 

  • Bertini I, Mangani S, Mobilio S, Orioli P. 1986 EXAFS investigation on a N-terminal fragment of human transferrin containing a single iron binding site. J Physique C8 47, 1193–1196.

    Google Scholar 

  • Bianconi A, Garcia J, Benfatto M. 1988 XANES in condensed systems. In: Mandelnow E, ed. Topics in Current Chemistry,Vol. 145, Berlin: Springer-Verlag: 29–67.

    Google Scholar 

  • Congiu Castellano A, Boffi F, Della Longa S et al. 1997 Aluminum site structure in serum transferrin and lactoferrin revealed by synchrotron radiation X-ray spectroscopy. Biometals 10, 363–367.

    Google Scholar 

  • Cramer SP. 1992 A13-element Ge detector for fluorescence EXAFS. Nucl Instrum Methods A319, 285–289.

    Google Scholar 

  • Durham PJ. 1988 Theory of XANES In: Prinz and Koningsberger eds. X-Ray Absorption: Principle, Application, Techniques of EXAFS, SEXAFS, XANES. New York: Wiley and Sons: 53–84.

    Google Scholar 

  • Garcia J, Bianconi A, Benfatto M, Natoli CR. 1986 Coordination geometry of transition metal ions in dilute solutions by XANES. J Phys C8 47, 49–54.

    Google Scholar 

  • Garrat R, Evans R, Hasnain SS, Lindley PF. 1991 XAFS studies of chicken dicupric ovotransferrin. Biochem J 233, 151–155.

    Google Scholar 

  • Hasnain SS, Evans RW, Garratt RC, Lindley PF. 1987 An extended X-ray Absorption fine structure study of freeze-dried and solution ovotransferrin. Biochem J 247, 369–375.

    Google Scholar 

  • Harris WR. 1983 Thermodynamic binding constants of the Zinc-human serum transferrin complex. Biochemistry 22, 3920–3926.

    Google Scholar 

  • Harris WR. 1986 Estimation of the ferrous Transferrin binding constants based on thermodynamic studies of nickel-transferrin. J Inorg Biochem 27, 41–52.

    Google Scholar 

  • Hirose J, Fujiwara H, Magarifuchi T et al. 1996 Copper binding selectivity of N-and C-sites in serum (human)-and ovo-transferrin. Biochem Biophys Acta 1296, 103–111.

    Google Scholar 

  • Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI. 1987 X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am Chem Soc 109, 6433–6442.

    Google Scholar 

  • Legrand D, Mazurier J, Montreuil J. 1988 Structure and spatial conformation of the iron binding sites of transferrin. Biochimie 70, 1185–1195.

    Google Scholar 

  • Onori G, Santucci A, Scafati A et al. 1988 Cu K-edge XANES of Cu(II) ions in aqueous solution: a measure of the axial ligand distances. Chem Phys Lett 149, 289–294.

    Google Scholar 

  • Palladino L, Della Longa S, Reale A et al. 1993 XANES of Cu(II)-ATP and related compounds in solution: quantitative determination of the distortion of the Cu site. J Chem Phys 98, 2720–2726.

    Google Scholar 

  • Smith CA, Baker HM, Baker EN. 1991 Preliminary crystallographic studies of copper and oxalate-substituted human lactotransferrin. J Mol Biol 219, 155–159.

    Google Scholar 

  • Smith TA, Penner-Hahn JE, Berding MA, Doniach S, Hodgson KO. 1985 Polarized X-ray edge spectroscopy of single-crystal copper(II) Complexes. J Am Chem Soc 107, 5945–5953.

    Google Scholar 

  • Strange RW, Alagna L, Durham P, Hasnain SS. 1990 An understanding of the X-ray Absorption Near-Edge structure of Copper (II) Imidazole Complexes. J Am Chem Soc 112, 4265–4268

    Google Scholar 

  • Williams J. 1975 Iron-binding fragments from the carboxyl-terminal region of hen ovotransferrin. Biochem J 149, 237–244.

    Google Scholar 

  • Yamamura T, Hagiwara S, Nakazato K, Satake K. 1984 Copper complexes at N and C-site of ovotransferrin: quantitative determination and visible absorption spectrum of each complex. Biochem Biophys Res Comm 119, 298–304

    Google Scholar 

  • Zapolski EJ, Princiotto JV.1980 Binding of iron from nitrilotriacetate analogues by human transferrin. Biochemistry 19, 3599–3603.

    Google Scholar 

  • Zweier L. 1980 Electron paramagnetic resonance studies of the binding of copper to conalbumin. J Biol Chem 255, 2782–2789.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boffi, F., Ascone, I., Varoli Piazza, A. et al. Comparative XANES study of serotransferrin and ovotransferrin at Cu K-edge: evidence of interactions among the metal sites. Biometals 13, 217–222 (2000). https://doi.org/10.1023/A:1009211820077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009211820077

Navigation