Skip to main content
Log in

The Genetic Explanation of Vertical Evolution

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic theory of natural selection proposed by Fisher takes into account differential reproduction success of organisms, which may be estimated by using the Malthusian parameter as fitness. However, the minimum possible value of this parameter depends on ecological stability of an organism, which determines the probability of the survival and participation in reproduction for each viable offspring. In the course of vertical evolution, leading to an increase in the level of biological organization, ecological stability of organisms increases, and this might be accompanied by a decrease in their fitness. In the macroevolutionary process, alterations in ecological stability of organisms, including those responsible for an increase in the level of biological organization, are basic and primary changes whereas alterations in fitness are additional and secondary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fisher, R.A., The Genetic Theory of Natural Selection, New York: Dover, 1958, 2nd ed.

    Google Scholar 

  2. Haldane, J.B., Faktory evolyutsii (Factors in Evolution), Moscow: Biomedgiz, 1935.

    Google Scholar 

  3. Wright, S., Evolution in Mendelian Populations, Genetics, 1931, vol. 16, pp. 97-159.

    Google Scholar 

  4. Dobzhansky, T., Genetics and the Origin of Species, New York: Columbia Univ. Press, 1982.

    Google Scholar 

  5. Darlington, Ph.J., Jr., Evolution: Questions for the Modern Theory, Proc. Natl. Acad. Sci. USA, 1983, vol. 80, pp. 1960-1963.

    Google Scholar 

  6. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Regularities in Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  7. Sukhodolets, V.V., Fitness, Ecological Stability, and Evolution of Diploid Organisms, Genetika (Moscow), 2000, vol. 36, no. 1, pp. 5-16.

    Google Scholar 

  8. Shields, D.C., Sharp, P.M., Higgins, D.G., and Wright, F., “Silent” Sites in Drosophila Genes Are Not Neutral: Evidence of Selection among Synonymous Codons, Mol. Biol. Evol., 1988, vol. 5, pp. 704-716.

    Google Scholar 

  9. Bulmer, M., The Selection-Mutation-Drift Theory of Synonymous Codon Usage, Genetics, 1991, vol. 129, pp. 398-402.

  10. Sukhodolets, V.V., Regulatory Selection as an Alternative to the Neutrality Theory, Genetika (Moscow), 1995, vol. 31, no. 12, pp. 1589-1597.

    Google Scholar 

  11. Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (Brief Essay of the Evolution Theory), Moscow: Nauka, 1977.

    Google Scholar 

  12. Pianka, E., Evolyutsionnaya ekologiya (Evolutionary Ecology), Moscow: Mir, 1981.

    Google Scholar 

  13. Mueller, L.D., Evolution of Competitive Ability in Drosophila by Density-Dependent Natural Selection, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 4383-4386.

    Google Scholar 

  14. Guo, P.Z., Mueller, L.D., and Ayala, F.J., Evolution of Behavior by Density-Dependent Natural Selection, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, pp. 10905-10906.

    Google Scholar 

  15. Sokolowski, M.B., Pereira, H.S., and Huges, K., Evolution of Foraging Behavior in Drosophila by Density-Dependent Selection, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 7373-7377.

    Google Scholar 

  16. Sukhodolets, V.V., Nature and the Mechanism of Biological Evolutionary Progress, Genetika (Moscow), 1982, vol. 18, no. 4, pp. 517-528.

    Google Scholar 

  17. Sukhodolets, V.V., Natural Selection in the Context of the Theory of Vertical Evolution, Genetika (Moscow), 1995, vol. 31, no. 1, pp. 5-14.

    Google Scholar 

  18. Sukhodolets, V.V., Biologicheskii progress i priroda geneticheskikh rekombinatsii (Biological Progress and the Nature of Genetic Recombinations), Moscow: Bioinformservis, 1996.

    Google Scholar 

  19. Wilson, E.O., The Nature of the Taxon Cycle in the Melanesian Ant Fauna, Am. Nat., 1961, vol. 95, pp. 169-193.

    Google Scholar 

  20. Ricklefs, R.E. and Cox, G.W., Taxon Cycles in the Land Bird Fauna of the West Indies, Am. Nat., 1972, vol. 106, pp. 195-219.

    Google Scholar 

  21. Barton, N.H. and Hewitt, G.M., Adaptation, Speciation, and Hybrid Zones, Nature, 1989, vol. 341, pp. 497-503.

    Google Scholar 

  22. Eldredge, N. and Gould, S.J., Punctuated Equilibria: An Alternative to Phyletic Gradualism, Models in Paleobiology, Schopf, T.J.M., Ed., San Francisco: Freeman, 1972, pp. 82-115.

    Google Scholar 

  23. Gould, S.J. and Eldredge, N., Punctuated Equilibrium Comes of Age, Nature, 1993, vol. 366, pp. 223-227.

    Google Scholar 

  24. Cronin, T.M., Speciation and Stasis in Marine Ostracoda: Climatic Modulation of Evolution, Science, 1985, vol. 227, pp. 60-63.

    Google Scholar 

  25. Tiffney, B.H. and Niklas, K.J., Clonal Growth in Land Plants: A Paleobotanical Perspective, Population Biology and Evolution, Jackson, J.B.C., Buss, L.W., and Cook, R.E., Eds., London: Yale Univ., 1985, pp. 35-66.

    Google Scholar 

  26. Moore, W.S., An Evaluation of Narrow Hybrid Zones in Vertebrates, Quart. Rev. Biol., 1977, vol. 52, pp. 263-277.

    Google Scholar 

  27. Corning, P.A., The Synergism Hypothesis: A Theory of Progressive Evolution, New York: McGraw-Hill, 1983.

    Google Scholar 

  28. Dobzhansky, Th., Speciation as a Stage in Evolutionary Divergence, Am. Nat., 1940, vol. 74, pp. 312-321.

    Google Scholar 

  29. Dobzhansky, Th., Genetics of the Evolutionary Process, New York: Columbia Univ., 1970.

    Google Scholar 

  30. Vrba, E.S., Patterns in the Fossil Record and Evolutionary Processes, Beyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm, Ho, M.-W. and Saunders, P.T., Eds., London: Academic, 1984, pp. 115-142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhodolets, V.V. The Genetic Explanation of Vertical Evolution. Russian Journal of Genetics 37, 115–122 (2001). https://doi.org/10.1023/A:1009095202621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009095202621

Keywords

Navigation