Skip to main content
Log in

Unique Periodic Orbits for Delayed Positive Feedback and the Global Attractor

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The delay differential equation, \(\dot x\)(t)=−μx(t)+f(x(t−1)), with μ>0 and a real function f satisfying f(0)=0 and f′>0 models a system governed by delayed positive feedback and instantaneous damping. Recently the geometric, topological, and dynamical properties of a three-dimensional compact invariant set were described in the phase space C=C([−1, 0],  ℝ) of initial data for solutions of the equation. In this paper, for a set of μ and f which include examples from neural network theory, we show that this three-dimensional set is the global attractor, i.e., the compact invariant set which attracts all bounded subsets of C. The proof involves, among others, results on uniqueness and absence of periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arino, O. (1993). A note on “The Discrete Lyapunov Function....” J. Diff. Eq. 104, 169-181.

    Google Scholar 

  2. Cao, Y. (1990). The discrete Lyapunov function for scalar delay differential equations. J. Diff. Eq. 87, 365-390.

    Google Scholar 

  3. Cao, Y. (1996). Uniqueness of periodic solution for differential delay equations. J. Diff. Eq. 128, 46-57.

    Google Scholar 

  4. Diekmann, O., van Gils, S. A., Verduyn Lunel, S. M., and Walther, H.-O. (1995). Delay Equations, Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York.

    Google Scholar 

  5. Hale, J. K. (1988). Asymptotic Behavior of Dissipative Systems, Am. Math. Soc., Providence, RI.

    Google Scholar 

  6. Hale, J. K., and Verduyn Lunel, S. M. (1993). Introduction to Functional Differential Equations, Springer-Verlag, New York.

    Google Scholar 

  7. Herz, A. V. M. (1994). Global analysis of recurrent neural networks. In Domany, E., van Hemmen, J. L., and Schulten, K. (eds.), Models of Neural Networks, Vol. 3, Springer-Verlag, New York.

    Google Scholar 

  8. Kaplan, J. L., and Yorke, J. A. (1975). On the stability of a periodic solution of a differential delay equation. SIAM J. Math. Anal. 6, 268-282.

    Google Scholar 

  9. Kaplan, J. L., and Yorke, J. A. (1977). On the nonlinear differential delay equation x′(t)=-f (x(t), x(t-1)). J. Diff. Eq. 72, 293-314.

    Google Scholar 

  10. Krisztin, T., Walther, H.-O., and Wu, J. (1999). Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, Fields Institute Monograph Series, Vol. 11, AMS, Providence, RI.

    Google Scholar 

  11. Mallet-Paret, J. (1988). Morse decompositions for differential delay equations. J. Diff. Eq. 72, 270-315.

    Google Scholar 

  12. Mallet-Paret, J., and Sell, G. (1996). Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J. Diff. Eq. 125, 385-440.

    Google Scholar 

  13. Mallet-Paret, J., and Sell, G. (1996). The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Diff. Eq. 125, 441-489.

    Google Scholar 

  14. Myschkis, A. A. (1955). Lineare Differentialgleichungen mit nacheilendem Argument, Deutscher Verlag Wiss., Berlin.

    Google Scholar 

  15. Nussbaum, R. D. (1979). Uniqueness and nonuniqueness for periodic solutions of x′(t)=-g(x(t- 1)). J. Diff. Eq. 34, 25-54.

    Google Scholar 

  16. Pakdaman, K., Malta, C. P., Grotta-Ragazzo, C., and Vibert, J.-F. (1997). Effect of delay on the boundary of the basin of attraction in a self-excited single neuron. Neural Comput. 9, 319-336.

    Google Scholar 

  17. Walther, H.-O. (1977). Ñber Ejektivität und periodische Lösungen bei Funktional-dierentialgleichungen mit verteilter Verzögerung, Habilitationsschrift, Universität München.

  18. Walther, H.-O. (1978). A theorem on the amplitudes of periodic solutions of differential delay equations with applications to bifurcation. J. Diff. Eq. 29, 396-404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krisztin, T., Walther, HO. Unique Periodic Orbits for Delayed Positive Feedback and the Global Attractor. Journal of Dynamics and Differential Equations 13, 1–57 (2001). https://doi.org/10.1023/A:1009091930589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009091930589

Navigation