Topics in Catalysis

, Volume 13, Issue 1–2, pp 91–98 | Cite as

Modelling alkali promotion in heterogeneous catalysis: in situ electrochemical control of catalytic reactions

  • Richard M. Lambert
  • Federico Williams
  • Alejandra Palermo
  • Mintcho S. Tikhov
Article

Abstract

Electron spectroscopic data and reactor measurements show that electrochemical promotion (EP) of thin film catalysts deposited on solid electrolyte supports is the result of spillover phenomena at the three‐phase boundary between the electrolyte, the catalyst and the gas phase. Ions from the electrolyte are discharged at the electrode/electrolyte interface and migrate to cover the catalyst surface whose properties are thereby strongly altered. The EP effect and the phenomena that underlie it are illustrated here by reference to the Na‐promoted catalytic reduction of NO by CO over copper. Electro‐pumping of Na from a β″‐alumina solid electrolyte to the catalyst surface results in large improvements in both activity and selectivity of the latter. Under reaction conditions, the alkali promoter is present as submonolayer amounts of NaNO3 on an oxidised Cu surface. The results indicate that Cu0 sites are not of significance and that the catalytically active surface is dominated by Cu+ and Cu2+ sites. They also show that Cu+ is the critically important site for NO adsorption and that EP is due to Na‐induced enhancement of the adsorption and dissociation of NO at Cu+ sites.

promotion sodium electrochemical NO reduction catalytic CO copper β″‐alumina XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.P. Kiskinova, Poisoning and Promotion in Catalysis Based on Surface Science Concepts and Experiments (Elsevier, Amsterdam, 1992).Google Scholar
  2. [2]
    J.W. Niemantsverdriet, Appl. Phys. A 61 (1995) 503.Google Scholar
  3. [3]
    S.J. Thomson, J. Chem. Soc., Faraday Trans. 83 (1987) 2001.Google Scholar
  4. [4]
    R.M. Ormerod and R.M. Lambert, in: Surface Reactions, Springer Series in Surface Science, Vol. 34, ed. R.J. Madix (Springer, Berlin, 1994) pp. 89–131.Google Scholar
  5. [5]
    A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert, G. Schmid and H. West, J. Phys. Chem. 99 (1995) 6096.CrossRefGoogle Scholar
  6. [6]
    I.V. Yentekakis, A. Palermo, N.C. Filkin, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B 101 (1997) 3759.CrossRefGoogle Scholar
  7. [7]
    N.C. Filkin, M.S. Tikhov, A. Palermo and R.M. Lambert, J. Phys. Chem. A 103 (1999) 2680.CrossRefGoogle Scholar
  8. [8]
    I.V. Yentekakis, R.M. Lambert, M.S. Tikhov, M. Konsolakis and V. Kiousis, J. Catal. 176 (1998) 82.CrossRefGoogle Scholar
  9. [9]
    M. Konsolakis, A. Palermo, M. Tikhov, R.M. Lambert and Y.V. Yentekakis, Ionics 4 (1998) 148.CrossRefGoogle Scholar
  10. [10]
    M. Konsolakis, L. Nalbantian, N. McLeod, I.V. Yentekakis and R.M. Lambert, Appl. Catal. B (1999), in press.Google Scholar
  11. [11]
    S. Tracey, A. Palermo, J.P. Holgado Vazquez and R.M. Lambert, J. Catal. 179 (1998) 231.CrossRefGoogle Scholar
  12. [12]
    S. Wodiunig, F. Bokeloh, J. Nicole and Ch. Comninellis, Electrochem. Solid State Lett. 2 (1999), in press.Google Scholar
  13. [13]
    S. Bebelis and C.G. Vayenas, J. Catal. 118 (1989) 125.CrossRefGoogle Scholar
  14. [14]
    C.G. Vayenas, M. Jaksic, S. Bebelis and Neophytides, in: Modern Aspects of Electrochemistry, eds. O'M Bockris, B.F. Conway and E. White (Plenum, New York, 1995) pp. 57–202.Google Scholar
  15. [15]
    C.G. Vayenas and S.G. Neophytides, in: Catalysis, Vol. 12 (Roy. Soc. Chem., Cambridge, 1996) pp. 195–253.Google Scholar
  16. [16]
    M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surf. Sci. 369 (1996) 351.CrossRefGoogle Scholar
  17. [17]
    C. Pliangos, I.V. Yentekakis, X. Verykios and C.G. Vayenas, J. Catal. 154 (1995) 124.CrossRefGoogle Scholar
  18. [18]
    I.V. Yentekakis and S. Bebelis, J. Catal. 137 (1992) 278.CrossRefGoogle Scholar
  19. [19]
    Ch. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal. 160 (1994) 190.CrossRefGoogle Scholar
  20. [20]
    I.V. Yentekakis, G.D. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal. 146 (1994) 292.CrossRefGoogle Scholar
  21. [21]
    O.A. Marina, I.V. Yentekakis, C.G. Vayenas, A. Palermo and R.M. Lambert, J. Catal. 166 (1997) 218.CrossRefGoogle Scholar
  22. [22]
    R.M. Lambert, M. Tikhov, A. Palermo, I.V. Yentekakis and C.G. Vayenas, Ionics 5 (1995) 366.CrossRefGoogle Scholar
  23. [23]
    A. Palermo, R.M. Lambert, I.R. Harkness, I.V. Yentekakis, O. Marina and C.G. Vayenas, J. Catal. 161 (1996) 471.CrossRefGoogle Scholar
  24. [24]
    I.V. Yentekakis and C.G. Vayenas, J. Catal. 149 (1994) 238.CrossRefGoogle Scholar
  25. [25]
    T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Catal. Lett. 41 (1990) 321.CrossRefGoogle Scholar
  26. [26]
    M. Marwood and C.G. Vayenas, J. Catal. 178 (1998) 429.CrossRefGoogle Scholar
  27. [27]
    R.D. Armstrong and M. Todd, in: Solid State Electrochemistry, ed. P.G. Bruce (Cambridge University Press, Cambridge, 1995) p. 277.Google Scholar
  28. [28]
    F.J. Williams, M.S. Tikhov, A. Palermo and R.M. Lambert, in preparation.Google Scholar
  29. [29]
    V.I. Parvulescu, P. Grange and B. Delmon, Catal. Today 46 (1998) 233.CrossRefGoogle Scholar
  30. [30]
    J.W. London and A.T. Bell, J. Catal. 31 (1973) 96.CrossRefGoogle Scholar
  31. [31]
    F.H.M. Dekker, S. Kraneveld, A. Bliek, F. Kapteijn and J.A. Moulijn, J. Catal. 170 (1997) 168.CrossRefGoogle Scholar
  32. [32]
    M. Fernandez-Garcia, C. Marquez Alvarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz and G.L. Haller, J. Phys. Chem. 99 (1995) 16380.CrossRefGoogle Scholar
  33. [33]
    A. Palermo, R.M. Lambert, I.R. Harkness, I.V. Yentekakis, O. Marina and C.G. Vayenas, J. Catal. 161 (1996) 471.CrossRefGoogle Scholar
  34. [34]
    N.D. Lang, S. Holloway and J.K. Norskov, Surf. Sci. 150 (1985) 24.CrossRefGoogle Scholar
  35. [35]
    F. Parmigiani, G. Pachioni, F. Illas and P.S. Bagus, J. Electron Spectrosc. Relat. Phenom. 59 (1992) 255.CrossRefGoogle Scholar
  36. [36]
    H.C. Allen, J.M. Laux, R. Vogt, B.J. Finlayson-Pitts and J.C. Hemminger, J. Phys. Chem. 100 (1996) 6371.CrossRefGoogle Scholar
  37. [37]
    J.J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables, 32 (1985) p. 1.CrossRefGoogle Scholar
  38. [38]
    C.D. Wagner, in: Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, eds. D. Briggs and M.P. Seah (Wiley, New York, 1983).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Richard M. Lambert
    • 1
  • Federico Williams
    • 1
  • Alejandra Palermo
    • 1
  • Mintcho S. Tikhov
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridge

Personalised recommendations