Skip to main content
Log in

Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear processes in hip joints are believed to occur chiefly under boundary lubrication conditions. We have shown that the efficiency of boundary lubrication of the ultrahigh-molecular-weight polyethylene (UHWMPE)–alumina tribopair in protein-containing solutions can be improved by modifying the surface hydrophilicity of the UHMWPE. Our experiments show that an oxygen-plasma treatment of polyethylene, producing significantly greater hydrophilicity due to modified surface chemistry, leads to faster and modified protein adsorption. A denser boundary layer of human serum albumin (HSA) proteins on the PE surface appears to enhance boundary lubrication, which leads to a 50% reduction of dynamic friction, as well as to a reduction of stiction, which is believed to be a key factor in wear mechanisms occurring in artificial hip joints. Following tribological testing in pure water, we observed the presence of a polyethylene transfer film on the alumina disc. This film was not formed after tribotesting either in protein or in Ringer's solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Hench, MRS Bulletin (May 1999) 13.

  2. G. Lewis, J. Biomedical Mater. Res. 38 (1997) 55.

    Google Scholar 

  3. S.M. Kurtz, O.K. Muratoglu, M. Evans and A.A. Edidin, Biomaterials 20 (1999) 1659.

    Google Scholar 

  4. T. Murakami, H. Higaki, Y. Sawae, N. Ohtsuki, S. Moriyama and Y. Nakanishi, Proc. Instn. Mech. Engrs. 212 H (1998) 23.

    Google Scholar 

  5. N.D. Spencer, ETH Bulletin (September 1999) 39.

  6. P.S. Barbour, M.H. Stone and J. Fisher, Biomaterials 20 (1999) 2101.

    Google Scholar 

  7. A. Unsworth, Tribol. Int. 28 (1995) 485.

    Google Scholar 

  8. B.N.J. Persson, Sliding Friction, Physical Priciples and Applications (Springer, Berlin, 1998).

    Google Scholar 

  9. S. Granick, Phys. Today (July 1999) 26.

  10. J. Black, Handbook of Biomaterial Properties (Chapman and Hall, London, 1998).

    Google Scholar 

  11. D.R. Lu and K. Park, J. Biomater. Polymer Edn. 1 (1990) 243.

    Google Scholar 

  12. B.R. Young, W.G. Pitt and S.L. Cooper, J. Colloid Interface Sci. 125 (1988) 246.

    Google Scholar 

  13. A. Unsworth, J. Engin. Medicine 205 (1991) 163.

    Google Scholar 

  14. M. Ungethüm and W. Winkler-Gniewek, Tribologie und Schmierungstechnik 37 (1990) 268.

    Google Scholar 

  15. L. Lianos, D. Parrat, T.Q. Hoc and T.M. Duc, J. Vac. Sci. Technol. A 12 (1994) 2491.

    Google Scholar 

  16. M. Morra, E. Occhiello, L. Gila and F. Garbassi, J. Adhes. 33 (1990) 77.

    Google Scholar 

  17. R.K. Wells, J.P.S. Badyal, I.W. Drummond, K.S. Robinson and F.J. Street, J. Adhes. Sci. Technol. 7 (1993) 1129.

    Google Scholar 

  18. R. Foerch, G. Kill and M.J. Walzak, J. Adhes. Sci. Technol. 7 (1993) 1077.

    Google Scholar 

  19. D. Godfrey, Tribol. Int. 28 (1995) 119.

    Google Scholar 

  20. Ciba-Geigy, Synovialflüssigkeit, Wissenschaftliche Tabellen Geigy, Ciba-Geigy AG, Basel.

  21. W. Dawihl, H. Mittelmeier, E. Dörre, G. Altmeyer and U. Hanser, Medizinisch-Orthopädische Technik 99 (1979) 114.

    Google Scholar 

  22. M. Morra, E. Occhiello and F. Garbassi, Langmuir 5 (1989) 872.

    Google Scholar 

  23. J.R. Cooper, D. Dowson and J. Fisher, Clin. Mater. 14 (1993) 295.

    Google Scholar 

  24. N.S. Eiss, K.C. Wood, J.A. Herold and K.A. Smyth, J. Lubr. Technol. 101 (1979) 212.

    Google Scholar 

  25. S.H. Rhee and K.C. Ludema, Wear 46 (1978) 231.

    Google Scholar 

  26. J.J. Ramsden, Chimia 53 (1999) 67.

    Google Scholar 

  27. G. Csucs and J.J. Ramsden, Biochim. Biophys. Acta 1369 (1998) 61.

    Google Scholar 

  28. R. Kurrat, Adsorption of Biomolecules on Titanium Oxide Layers in Biological Model Solutions, Dissertation No. 12891, ETH-Zürich (1998).

  29. R.J. Green, J. Davies, M.C. Davies, C.J. Roberts and S.J.B. Tendler, Biomaterials 18 (1997) 405.

    Google Scholar 

  30. S.H. Wheale, C.P. Barker and J.P.S. Badyal, Langmuir 14 (1998) 6699.

    Google Scholar 

  31. K. Feldman, G. Hähner, N.D. Spencer, P. Harder and M. Grunze, J. Am. Chem. Soc. 121 (1999) 10134.

    Google Scholar 

  32. V.A. Parsegian and D. Gingell, Biophys. J. 12 (1972) 1192.

    Google Scholar 

  33. Y.Y. Zhu, G.H. Kelsall and H.A. Spikes, Tribol. Trans. 37 (1994) 811.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widmer, M.R., Heuberger, M., Vörös, J. et al. Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design. Tribology Letters 10, 111–116 (2001). https://doi.org/10.1023/A:1009074228662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009074228662

Navigation