CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors


Ni supported catalysts were prepared by the solid phase crystallization (spc) method starting from hydrotalcite (HT) anionic clay based on [Mg6Al2(OH)16CO3 2−]⋅H2O as the precursor. The precursors were prepared by the co-precipitation method from nitrates of the metal components, and then thermally decomposed, in situ reduced to form Ni supported catalysts (spc-Ni/Mg–Al) and used for the CO2 reforming of CH4 to synthesis gas. Ni2+ can well replace the Mg2+ site in the hydrotalcite, resulting in the formation of highly dispersed Ni metal particles on spc-Ni/Mg–Al. The spc-catalyst thus prepared showed higher activity than those prepared by the conventional impregnation (imp) method such as Ni/α-Al2O3 and Ni/MgO. When Ni was supported by impregnation of Mg–Al mixed oxide prepared from Mg–Al HT, the activity of imp-Ni/Mg–Al thus prepared was not so low as those of Ni/α-Al2O3 and Ni/MgO but close to that of spc-Ni/Mg–Al. The relatively high activity of imp-Ni/Mg–Al may be due to the regeneration of the Mg–Al HT phase from the mixed oxide during the preparation, resulting in an occurring of the incorporation of Ni2+ in the Mg2+ site in the HT as seen in the spc-method. Such an effect may give rise to the formation of highly dispersed Ni metal species and afford high activity on the imp-Ni/Mg–Al.

This is a preview of subscription content, access via your institution.


  1. [1]

    A.T. Ashcroft,A.K. Cheetham,J.S. Foord,M.L.H. Green andP.D.F. Vernon, Nature 352 (1991) 225.

    Google Scholar 

  2. [2]

    Z. Zhang,X.E. Verykios,S.M. MacDonald andS. Affrossman, J. Phys. Chem. 100 (1996) 744.

    Google Scholar 

  3. [3]

    V.C.H. Kroll,H.M. Swaan andC. Mirodatos, J. Catal. 161 (1996) 409

    Google Scholar 

  4. [4]

    F. Solymosi,Gy. Kustan andA. Erdohelyi, Catal. Lett. 11 (1991) 149.

    Google Scholar 

  5. [5]

    J.R. Rostrup-Nielsen andJ.-H. Bak Hansen, J. Catal. 144 (1993) 38.

    Google Scholar 

  6. [6]

    R. Blom,I.M. Dahl,A. Slagtern,B. Sortland,A. Spjelkavik andE. Tangstad, Catal. Today 21 (1994) 535.

    Google Scholar 

  7. [7]

    A. Slagtern,U. Olsbye,R. Blom,I.M. Dahl andH. Fjellvag, Appl. Catal. A 145 (1996) 375.

    Google Scholar 

  8. [8]

    C.H. Bartholomew, Catal. Rev. Sci. Eng. 24 (1982) 67.

    Google Scholar 

  9. [9]

    O. Yamazaki,T. Nozaki,K. Omata andK. Fujimoto, Chem. Lett. (1992) 1953.

  10. [10]

    T. Hayakawa,H. Harihara,A.G. Andersen,A.P.E. York,K. Suzuki,H. Yasuda andK. Takehira, Angew. Chem. Int. Ed. Engl. 35 (1996) 192

    Google Scholar 

  11. [11]

    F. Cavani,F. Trifirò andA. Vaccari, Catal. Today 11 (1991) 173.

    Google Scholar 

  12. [12]

    Z. Gandao,B. Coq,L.C. de Menorval andT. Ticht, Appl. Catal. A 147 (1996) 395.

    Google Scholar 

  13. [13]

    F.M. Cabello,D. Ticht,B. Coq,A. Vaccari andN.T. Dung, J. Catal. 167 (1997) 142.

    Google Scholar 

  14. [14]

    F. Basile,L. Basini,G. Fornasari,M. Gazzano,F. Trifirò andA. Vaccari, J. Chem. Soc. Chem. Commun. (1996) 2436.

  15. [15]

    F. Basile,L. Basini,M. D'Amore,G. Fornasari,A. Guarinoni,D. Matteuzzi,G. Del Piero,F. Trifirò andA. Vaccari, J. Catal. 173 (1998) 247.

    Google Scholar 

  16. [16]

    R. Shiozaki,T. Hayakawa,Y.-Y. Liu,T. Ishi,M. Kumagai,S. Hamakawa,K. Suzuki,T. Itoh,T. Shishido andK. Takehira, Catal. Lett. 58 (1999) 131.

    Google Scholar 

  17. [17]

    T. Shishido,S. Sameshima,T. Hayakawa,S. Hamakawa,E. Tanabe,K. Ito andK. Takehira, Stud. Surf. Sci. Catal. 130 (2000) 2117.

    Google Scholar 

  18. [18]

    D.C. Puxley,I.J. Kitchener,C. Komodroms andN.D. Parkins, Stud. Surf. Sci. Catal. 16 (1983) 237.

    Google Scholar 

  19. [19]

    J.H. Ross, in: Specialist Periodical Reports, Vol. 7, eds. G.C. Bond andG. Webb (Royal Soc. Chem., London, 1985) pp. 1-45, and references therein.

    Google Scholar 

  20. [20]

    R.D. Shannon, Acta Crystallogr. A 32 (1976) 751.

    Google Scholar 

  21. [21]

    G. Fornasari,M. Gazzano,D. Matteuzzi,F. Trifirò andA. Vaccari, Appl. Clay. Sci. 10 (1995) 69.

    Google Scholar 

  22. [22]

    W.T. Richle, Chemtech (January 1986) 58.

  23. [23]

    A. Parmaliana,F. Arena,F. Frusteri andN. Giordano, J. Chem. Soc. Faraday Trans. 86 (1990) 2663.

    Google Scholar 

  24. [24]

    F. Areana,B.A. Horrell,D.L. Cocke,A. Parmaliana andN. Giordano, J. Catal. 132 (1991) 58.

    Google Scholar 

  25. [25]

    A. Parmaliana,F. Arena,F. Frusteri,S. Coluccia,L. Marchese,G. Martra andA.L. Chuvilin, J. Catal. 141 (1993) 34.

    Google Scholar 

  26. [26]

    F. Areana,F. Frusteri,A. Parmaliana,L. Plyasova andA.N. Shmakov, J. Chem. Soc. Faraday Trans. 92 (1996) 469.

    Google Scholar 

  27. [27]

    O. Yamazaki,K. Tomishige and K. Fujimoto, Appl. Catal. A 136 (1996) 49.

    Google Scholar 

  28. [28]

    K. Tomishige andK. Fujimoto, Catal. Surv. Jpn. 2 (1998) 3.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shishido, T., Sukenobu, M., Morioka, H. et al. CO2 reforming of CH4 over Ni/Mg–Al oxide catalysts prepared by solid phase crystallization method from Mg–Al hydrotalcite-like precursors. Catalysis Letters 73, 21–26 (2001).

Download citation

  • CO2 reforming of CH4
  • synthesis gas
  • hydrotalcite
  • Ni supported catalyst