Skip to main content
Log in

Water-Soluble Organometallic Compounds. 8[1]. Synthesis, Spectral Properties, and Crystal Structures of 1,3,5-Triaza-7-phosphaadamantane (PTA) Derivatives of Metal Carbonyl Clusters: Ru3(CO)9(PTA)3 and Ir4(CO)7(PTA)5

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The syntheses of Ru3(CO)9(PTA)3 and Ir4(CO)7(PTA)5 were accomplished through the thermal reactions of Ru3(CO)12 or Ir4(CO)12 with the water-soluble phosphine, PTA(1,3,5-triaza-7-phosphaadamantane). The ruthenium derivative was shown by X-ray crystallography to consist of a triangular Ru3 core with three nearly equal Ru–Ru bonds, with each ruthenium atom bearing an equatorially positioned PTA ligand. In Ir4(CO)7(PTA)5 the iridium atoms define a tetrahedron which is bridged on three edges by CO ligands. One basal iridium atom contains two PTA ligands, while the other two basal and the apical iridium atoms each possess one PTA ligand in their coordination spheres. Although, Ru3(CO)9(PTA)3 is only sparingly soluble in pure water, it is very soluble in aqueous solution of pH<4. Indeed the triruthenium cluster can be extracted reversibly between an aqueous and an organic phase (e.g., CH2Cl2) by changing the pH of the aqueous phase. On the other hand the more highly PTA substituted cluster, Ir4(CO)7(PTA)5, exhibits good solubility in aqueous solution (pH 7 and below) and a variety of organic solvents. Both cluster derivatives are stable in deoxygenated, aqueous solutions for extended period of time (>24 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Darensbourg, J. B. Robertson, D. L. Larkins, and J. H. Reibenspies (1999). Inorg. Chem. 38, 2473.

    Google Scholar 

  2. W. Keim, in A. Mortreux, F. Petir, and D. Reidel (eds.), Industrial Applications of Homogeneous Catalysis (Dordrecht, 1988), p. 338.

  3. B. Cornils and W. A. Herrmann, in B. Cornils and W. A. Herrmann (eds.), Aqueous-Phase Organometallic Catalysis (Wiley-VCH, Weinheim, 1998), p. 583.

    Google Scholar 

  4. (a) F. Joó and A. Bényei (1989). J. Organomet. Chem. 363, C19; (b) A. Bényei and F. Joó (1990). J. Mol. Catal. 58, 151.

    Google Scholar 

  5. J. M. Grosselin, C. Mercier, G. Allmang, and F. Grass (1991). Organometallics 10, 2126.

    Google Scholar 

  6. M. Y. Darensbourg and D. Daigle (1975). Inorg. Chem. 14, 1217.

    Google Scholar 

  7. J. R. DeLerno, L. M. Trefonas, M. Y. Darensbourg, and R. J. Majeste (1976). Inorg. Chem. 15, 816.

    Google Scholar 

  8. E. Fluck, J. E. Förster, J. Weidlein, and E. Hädicke (1977). Z. Naturforsch. Teil B 32B, 499.

    Google Scholar 

  9. K. J. Fisher, E. C. Alyea, and N. Shahnazarian (1990). Phosphorus, Sulfur, Silicon Relat. Elem. 48, 37.

    Google Scholar 

  10. (a) D. J. Darensbourg, F. Joó, M. Kannisto, A. Kathó, and J. H. Reibenspies (1992). Organometallics 11, 1990; (b) D. J. Darensbourg, F. Joó, M. Kannisto, A. Kathó, J. H. Reibenspies, and D. J. Daigle (1994). Inorg. Chem. 33, 200.

    Google Scholar 

  11. D. J. Daigle (1998). Inorg. Synth. 32, 40.

    Google Scholar 

  12. D. J. Darensbourg, T. J. Decuir, and J. H. Reibenspies, in I. T. Horváth and F. Joó (eds.), Aqueous Organometallics Chemistry and Catalysis, NATO ASI Series 3, High Technology (Kluwer, Dordrecht, The Netherlands, 1995), pp. 61-77.

    Google Scholar 

  13. M. R. Churchill, F. J. Hollander, and J. P. Hutchinson (1977). Inorg. Chem. 16, 2655.

    Google Scholar 

  14. G. Lavigne and H. D. Kaesz (1984). J. Am. Chem. Soc. 106, 4647.

    Google Scholar 

  15. B. Fontal, J. Orlewski, C. C. Santini, and J. M. Basset (1986). Inorg. Chem. 25, 4322.

    Google Scholar 

  16. I. S. Butler, Zhen H. Xu, D. J. Darensbourg, and M. Pala (1987). J. Raman Spectr. 18, 357.

    Google Scholar 

  17. D. R. Tyler, R. A. Levenson, and H. B. Gray (1978). J. Am. Chem. Soc. 100, 7888.

    Google Scholar 

  18. D. J. Darensbourg and B. J. Baldwin-Zuschke (1981). Inorg. Chem. 20, 3846.

    Google Scholar 

  19. M. R. Churchill and J. P. Hutchinson (1978). Inorg. Chem. 17, 3528.

    Google Scholar 

  20. M. R. Churchill and J. P. Hutchinson (1980). Inorg. Chem. 19, 2765.

    Google Scholar 

  21. V. Albano, P. Bellon, and V. Scatturin (1967). Chem. Commun. 730.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darensbourg, D.J., Beckford, F.A. & Reibenspies, J.H. Water-Soluble Organometallic Compounds. 8[1]. Synthesis, Spectral Properties, and Crystal Structures of 1,3,5-Triaza-7-phosphaadamantane (PTA) Derivatives of Metal Carbonyl Clusters: Ru3(CO)9(PTA)3 and Ir4(CO)7(PTA)5. Journal of Cluster Science 11, 95–107 (2000). https://doi.org/10.1023/A:1009060614412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009060614412

Navigation