Skip to main content
Log in

Comparison of the Bonding of Benzene and C60 to a Metal Cluster: Ru3(CO)9(μ3-η2,η 2,η2-C6H6) and Ru3(CO)9(μ3-η2,η2,η2-C60)

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The electron distributions and bonding in Ru3(CO)9(μ 3-η 2,η 2,η 2-C6H6) and Ru3(CO)9(μ 3-η 2,η 2,η 2-C60) are examined via electronic structure calculations in order to compare the nature of ligation of benzene and buckminsterfullerene to the common Ru3(CO)9 inorganic cluster. A fragment orbital approach, which is aided by the relatively high symmetry that these molecules possess, reveals important features of the electronic structures of these two systems. Reported crystal structures show that both benzene and C60 are geometrically distorted when bound to the metal cluster fragment, and our ab initio calculations indicate that the energies of these distortions are similar. The experimental Ru–Cfullerene bond lengths are shorter than the corresponding Ru–Cbenzene distances and the Ru–Ru bond lengths are longer in the fullerene-bound cluster than for the benzene-ligated cluster. Also, the carbonyl stretching frequencies are slightly higher for Ru3(CO)9(μ 3-η 2,η 2,η 2-C60) than for Ru3(CO)9(μ 3-η 2,η 2,η 2-C6H6). As a whole, these observations suggest that electron density is being pulled away from the metal centers and CO ligands to form stronger Ru–Cfullerene than Ru–Cbenzene bonds. Fenske-Hall molecular orbital calculations show that an important interaction is donation of electron density in the metal–metal bonds to empty orbitals of C60 and C6H6. Bonds to the metal cluster that result from this interaction are the second highest occupied orbitals of both systems. A larger amount of density is donated to C60 than to C6H6, thus accounting for the longer metal–metal bonds in the fullerene-bound cluster. The principal metal–arene bonding modes are the same in both systems, but the more band-like electronic structure of the fullerene (i.e., the greater number density of donor and acceptor orbitals in a given energy region) as compared to C6H6 permits a greater degree of electron flow and stronger bonding between the Ru3(CO)9 and C60 fragments. Of significance to the reduction chemistry of M3(CO)9(μ 3-η 2,η 2,η 2-C60) molecules, the HOMO is largely localized on the metal–carbonyl fragment and the LUMO is largely localized on the C60 portion of the molecule. The localized C60 character of the LUMO is consistent with the similarity of the first two reductions of this class of molecules to the first two reductions of free C60. The set of orbitals above the LUMO shows partial delocalization (in an antibonding sense) to the metal fragment, thus accounting for the relative ease of the third reduction of this class of molecules compared to the third reduction of free C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. L. Balch and M. M. Olmstead (1998). Chem. Rev. 98, 2123.

    Google Scholar 

  2. J. M. Hawkins, S. Meyer, T. A. Lewis, S. Loren, and F. J. Hollander (1991). Science 252, 312.

    Google Scholar 

  3. N. Koga and K. Morokuma (1993). Chem. Phys. Lett. 202, 330.

    Google Scholar 

  4. P. J. Fagan, J. C. Calabrese, and B. Malone (1991). J. Am. Chem. Soc. 113, 9408.

    Google Scholar 

  5. D. L. Lichtenberger, L. L. Wright, N. E. Gruhn, and M. E. Rempe (1993). Syn. Met. 59, 353.

    Google Scholar 

  6. H. Fujimoto, Y. Nakao, and K. Fukui (1993). J. Mol. Struct. 300, 425.

    Google Scholar 

  7. D. L. Lichtenberge r, L. L. Wright, N. E. Gruhn, and M. E. Rempe (1994). J. Organomet. Chem. 479, 213.

    Google Scholar 

  8. J. A. Lopez and C. Mealli (1994). J. Organomet. Chem. 478, 161.

    Google Scholar 

  9. A. L. Balch, V. J. Catalano, and J. W. Lee (1991). Inorg. Chem. 30, 3980.

    Google Scholar 

  10. M. D. Westmeyer, C. P. Galloway, and T. B. Rauchfuss (1994). Inorg. Chem. 33, 4615.

    Google Scholar 

  11. M. D. Westmeyer, T. B. Rauchfuss, and A. K. Verma (1996). Inorg. Chem. 35, 7140.

    Google Scholar 

  12. A. Kramer, R. Lingnau, I.-P. Lorenz, and H. A. Mayer (1990). Chem. Ber. 123, 1821.

    Google Scholar 

  13. A. Kramer, and I.-P. Lorenz (1990). J. Organomet. Chem. 338, 187.

    Google Scholar 

  14. J. Messelhauser, I.-P. Lorenz, K. Haug, and W. Z. Hiller (1985). Z. Naturforsch. 40B, 1064.

    Google Scholar 

  15. I. J. Mavunkal, Y. Chi, S. Peng, and G. Lee (1995). Organomet. 14, 4454.

    Google Scholar 

  16. M. Rasinkangas, T. T. Pakkanen, T. A. Pakkanen, M. Ahlgren, and J. Rouvinen (1993). J. Am. Chem. Soc. 115, 4901.

    Google Scholar 

  17. J. R. Rogers, and D. S. Marynick (1993). Chem. Phys. Lett. 205, 197.

    Google Scholar 

  18. H.-F. Hsu and J. R. Shapley (1996). J. Am. Chem. Soc. 118, 9192.

    Google Scholar 

  19. B. F. J. Johnson, J. Lewis, M. Martinelli, A. H. Wright, D. Braga, and F. Grepioni (1990). J. Chem. Soc., Chem. Comm. 364.

  20. D. Braga, F. Grepioni, B. F. G. Johnson, J. Lewis, C. E. Housecroft, and M. Martinelli (1991). Organomet. 10, 1260.

    Google Scholar 

  21. K. Lee and J. R. Shapley (1998). Organomet. 17, 3020.

    Google Scholar 

  22. K. Lee, H.-F. Hsu, and J. R. Shapley (1997). Organomet. 16, 3876.

    Google Scholar 

  23. H.-F. Hsu, S. R. Wilson, and J. R. Shapley (1997). Chem. Commun. 1125.

  24. J. T. Park, J.-J. Cho, H. Song, C.-S. Jun, Y. Son, and J. Kwak (1997). Inorg. Chem. 36, 2698.

    Google Scholar 

  25. H.-F. Hsu, Y. Du, T. E. Albrecht-Schmitt, S. R. Wilson, and J. R. Shapley (1998). Organomet. 17, 1756.

    Google Scholar 

  26. H. Song, K. Lee, J. T. Park, and M.-G. Choi (1998). Organomet. 17, 4477.

    Google Scholar 

  27. M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. H. Wright (1985). J. Chem. Soc., Chem. Comm. 1682.

  28. M. A. Gallop, M. P. Gomez-Sal, C. E. Housecroft, B. F. G. Johnson, J. Lewis, S. M. Owen, P. R. Raithby, and A. H. Wright (1992). J. Am. Chem. Soc. 114, 2502.

    Google Scholar 

  29. J. T. Park, H. Song, J.-J. Cho, M.-K. Chung, J.-H. Lee, and I.-H. Suh (1998). Organomet. 17, 227.

    Google Scholar 

  30. M. B. Hall and R. F. Fenske (1972). Inorg. Chem. 11, 1619.

    Google Scholar 

  31. B. E. Bursten, J. R. Jensen, and R. F. Fenske (1978). J. Chem. Phys. 68, 3320.

    Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, Revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995.

    Google Scholar 

  33. B. E. R. Schilling and R. Hoffmann (1979). J. Am. Chem. Soc. 101, 3456.

    Google Scholar 

  34. J. Riehl, N. Koga, and K. Morokuma (1993). Organomet. 12, 4788.

    Google Scholar 

  35. R. C. Haddon, L. E. Brus, and K. Raghavachari (1986). Chem. Phys. Lett. 125, 459.

    Google Scholar 

  36. S. Satpathy (1986). Chem. Phys. Lett. 130, 545.

    Google Scholar 

  37. G. E. Scuseria (1991). Chem. Phys. Lett. 176, 423.

    Google Scholar 

  38. D. L. Lichtenberger, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb (1991). Chem. Phys. Lett. 176, 208.

    Google Scholar 

  39. D. L. Lichtenberger, M. E. Jatcko, K. W. Nebesny, C. D. Ray, D. R. Huffman, and L. D. Lamb, in R. S. Averback, J. Bernholc, and D. L. Nelson (eds.), Clusters and Cluster-Assembled Materials (Mat. Res. Soc. Symp. Proc. 206, 1991), p. 673.

  40. J. L. Martins, N. Troullier, and J. H. Weaver (1991). Chem. Phys. Lett. 180, 457.

    Google Scholar 

  41. J. H. Weaver, J. L. Martins, T. Komeda, Y. Chen, T. R. Ohno, G. H. Kroll, N. Troullier, R. E. Haufler, and R. E. Smalley (1991). Phys. Rev. Lett. 66, 1741.

    Google Scholar 

  42. P. J. Benning, D. M. Poirier, N. Troullier, J. L. Martins, H. H. Weaver, R. E. Haufler, L. P. F. Chibante, and R. E. Smalley (1991). Phys. Rev. B Rapid Commun. 44, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynn, M.A., Lichtenberger, D.L. Comparison of the Bonding of Benzene and C60 to a Metal Cluster: Ru3(CO)9(μ3-η2,η 2,η2-C6H6) and Ru3(CO)9(μ3-η2,η2,η2-C60). Journal of Cluster Science 11, 169–188 (2000). https://doi.org/10.1023/A:1009021000300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009021000300

Navigation