Skip to main content
Log in

The chemisorption of nitric oxide and the oxidation of ammonia at Cu(110) surfaces: a X-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy (STM) study

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The dissociative chemisorption of nitric oxide at Cu(110) has been shown to result in rapid ordering of oxygen adatoms as (2×1)O chains oriented along the 〈100〉 direction while the associated nitrogen adatoms are mainly disordered at 295 K. Surface diffusion of the N adatoms, following bond cleavage, is activated and ordering of the (2×3)N strings occurs on heating to 430 K. A number of distinct reaction pathways have been isolated during the oxidation of ammonia resulting in the formation of either chemisorbed imide or nitrogen adatoms. The latter depending on temperature, may exhibit a (2×3)N, a (3×3)N or both structures may exist simultaneously. The concentration of nitrogen in the complete (2×3)N structure has been determined to be 6.6×1014 cm-2, with only a 25% decrease in nitrogen concentration leading to the transformation to the (3×3)N structure. The oxygen atoms at a Cu(110)–O overlayer, and present at the ends of the (2×1) strings terminating in steps, show specific reactivity when exposed to ammonia at 375 K resulting in the “decoration” of the steps with imide species while the oxygens within the (2×1) strings remain unreactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Johnson, M.H. Matloob and M.W. Roberts, J. Chem. Soc. Faraday Trans. I 75 (1979) 2143; J. Chem. Soc. Chem. Commun. (1978) 40

    Google Scholar 

  2. C.T. Au, A.F. Carley and M.W. Roberts, Phil. Trans. Roy. Soc. London A 318 (1986) 61

    Google Scholar 

  3. C.T. Au and M.W. Roberts, unpublished work.

  4. A.F. Carley and M.W. Roberts, Proc. Roy. Soc. London A 363 (1978) 403.

    Google Scholar 

  5. F.M. Leibsle, S.S. Dhesi, S.D. Barrett and A.W. Robinson, Surf. Sci. 317 (1994) 309, 320.

    Google Scholar 

  6. F.M. Leibsle, R. Davis and A.W. Robinson, Phys. Rev. B 49 (1994) 8290

    Google Scholar 

  7. H. Nieuhs, R. Spitzl, K. Besocke and G. Comsa, Phys. Rev. B 43 (1991) 12619

    Google Scholar 

  8. D.T. Vu and K.A.R. Mitchell, Phys. Rev. B 49 (1994) 11515

    Google Scholar 

  9. [4]H. Dürr, D.B. Poker, D.M. Zehner and J.H. Barrett, Phys. Rev. B 49 (1994) 16789

    Google Scholar 

  10. H. Wende, D. Arrantis, M. Tischer, R. Chauvistré, H. Henneken, F. May and K. Baberscke, Phys. Rev. B 54 (1996) 5920.

    Google Scholar 

  11. [5] N. Takehiro, F. Besenbacher, E. Laegsgaard, K. Tanaka and I. Stensgaard, Surf. Sci. 397 (1998) 145.

    Google Scholar 

  12. [6] W.A. Brown, R.K. Sharma, D.A. King and S. Haq, J. Phys. Chem. 100 (1996) 12559.

    Google Scholar 

  13. (a) C.T. Au and M.W. Roberts, Nature 319 (1986) 206; J. Chem. Soc. Faraday Trans. I 83 (1987) 2047.

    Google Scholar 

  14. A. Boronin, A. Pashusky and M.W. Roberts, Catal. Lett. 16 (1992) 245.

    Google Scholar 

  15. A.F. Carley, P.R. Davies and M.W. Roberts, J. Chem. Soc. Chem. Commun. (1998) 1793.

  16. M.W. Roberts, Chem. Soc. Rev. (1996) 437, and references therein.

  17. A.F. Carley and M.W. Roberts, J. Chem. Soc. Chem. Commun. (1987) 355.

  18. (a) X.-C. Guo and R.J. Madix, Discuss. Faraday Soc. 105 (1996) 139.

    Google Scholar 

  19. X.-C. Guo and R.J. Madix, Surf. Sci. Lett. 367 (1996) L95.

    Google Scholar 

  20. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar, G.U. Kulkarni and M.W. Roberts, Topics Catal. 11/12 (2000) 299.

    Google Scholar 

  21. H. Brune, J. Wintterlin, J. Trost, G. Ertl, J. Wiechers and R.J. Behm, J. Chem. Phys. 99 (1993) 2128.

    Google Scholar 

  22. M.R. Tate, D. Gosalvez-Blanco, D.P. Pullman, A.A. Tsekouras, Y.L. Li, J.J. Yang, K.B. Laughlin, S.C. Eckman, M.F. Bertino and S.T. Ceyer, J. Chem. Phys. 111 (1999) 3679, 3695.

    Google Scholar 

  23. B. Afsin, P.R. Davies, A. Pashusky, M.W. Roberts and D. Vincent, Surf. Sci. 284 (1993) 109.

    Google Scholar 

  24. A.F. Carley, P.R. Davies, M.W. Roberts and D. Vincent, Topics Catal. 1 (1994) 35.

    Google Scholar 

  25. C.T. Au and M.W. Roberts, Chem. Phys. Lett. 74 (1980) 472.

    Google Scholar 

  26. A.P. Baddorf and D.M. Zehner, Surf. Sci. 238 (1990) 255.

    Google Scholar 

  27. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar, G.U. Kulkarni and M.W. Roberts, Surf. Sci. 447 (2000) 39, 50.

    Google Scholar 

  28. L. Moroney, S. Rassias and M.W. Roberts, Surf. Sci. 105 (1981) L249.

    Google Scholar 

  29. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar and M.W. Roberts, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carley, A., Davies, P., Harikumar, K. et al. The chemisorption of nitric oxide and the oxidation of ammonia at Cu(110) surfaces: a X-ray photoelectron spectroscopy (XPS) and scanning tunnelling microscopy (STM) study. Topics in Catalysis 14, 101–109 (2000). https://doi.org/10.1023/A:1009015318393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009015318393

Navigation