Skip to main content
Log in

Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Lamellar bone is common among primates, either in the form of extended planar circumferential arrays, or as cylindrically shaped osteons. Osteonal bone generally replaces circumferential lamellar bone with time, and it is therefore of much interest to compare the mechanical properties and fracture behavior of these two forms of lamellar bone. This is, however, difficult as natural specimens of circumferential lamellar bone large enough for standard mechanical tests are not available. We found that as a result of treatment with large doses of alendronate, the lateral sides of the diaphyses of baboon tibia contained fairly extensive regions of circumferential lamellar bone, the structure of which appears to be indistinguishable from untreated lamellar bone. Three-point bending tests were used to determine the elastic and ultimate properties of almost pure circumferential lamellar bone and osteonal bone in four different orientations relative to the tibia long axis. After taking into account the differences in porosity and extent of mineralization of the two bone types, the flexural modulus, bending strength, fracture strain and nominal work-to-fracture properties were similar for the same orientations, with some exceptions. This implies that it is the lamellar structure itself that is mainly responsible for these mechanical properties. The fracture behavior and morphologies of the fracture surfaces varied significantly with orientation in both types of bone. This is related to the microstructure of lamellar bone. Osteonal bone exhibited quite different damage-related behavior during fracture as compared to circumferential lamellar bone. Following fracture the two halves of osteonal bone remained attached whereas in circumferential lamellar bone they separated. These differences could well provide significant adaptive advantages to osteonal bone function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. CURREY, in "The Mechanical Adaptations of Bones" (Princeton University Press, Princeton, NJ, 1984).

    Google Scholar 

  2. D. H. ENLOW, Texas J. Sci. 10 (1958) 187.

    Google Scholar 

  3. A. DE RICQLÉS, F. J. MEUNIER, J. CASTANET and H. FRANCILLON-VIEILLOT, in "Bone", Vol. 3, edited by B. K. Hall (CRC Press, Boca Raton, FL, 1991) p. 1.

    Google Scholar 

  4. R. A. ROBINSON, J. Bone Joint Surg. 34A (1952) 389.

    Google Scholar 

  5. M. J. GLIMCHER, Rev. Mod. Phys. 31 (1959) 313.

    Google Scholar 

  6. S. WEINER and W. TRAUB, FEBS Lett. 206 (1986) 262.

    PubMed  Google Scholar 

  7. Idem., FASEB J. 6 (1992) 879.

    PubMed  Google Scholar 

  8. W. GEBHARDT, Arch. Entwickl. Mech. Org. 20 (1906) 187.

    Google Scholar 

  9. J. W. SMITH, J. Anat. 94 (1960) 329.

    Google Scholar 

  10. M. M. GIRAUD-GUILLE, Calcif. Tissue Int. 42 (1988) 167.

    PubMed  Google Scholar 

  11. S. WEINER, T. ARAD, I. SABANAY and W. TRAUB, Bone 20 (1997) 509.

    PubMed  Google Scholar 

  12. E. B. RUTH, Amer. J. Anat. 80 (1947) 35.

    Google Scholar 

  13. G. MAROTTI, Calcif. Tissue Int. 53 (1993) 547.

    Google Scholar 

  14. R. A. ROBINSON and S. R. ELLIOT, J. Bone Joint Surg. 39A (1957) 167.

    Google Scholar 

  15. E. P. KATZ and S. LI, J. Mol. Biol. 80 (1973) 1.

    PubMed  Google Scholar 

  16. J. D. CURREY, J. Biomech. 21 (1988) 131.

    PubMed  Google Scholar 

  17. R. B. MARTIN and D. L. BOARDMAN, ibid. 26 (1993) 1047.

    PubMed  Google Scholar 

  18. J. JOWSEY, Clin. Orthop. 17 (1960) 210.

    Google Scholar 

  19. F. G. EVANS and R. VINCENTELLI, J. Biomech. 2 (1969) 63.

    Google Scholar 

  20. C. M. RIGGS, L. C. VAUGHAN, G. P. EVANS, L. E. LANYON and A. BOYDE, Anat. Embryol. 187 (1993) 239.

    PubMed  Google Scholar 

  21. M. W. MASON, J. G. SKEDROS and R. D. BLOEBAUM, Bone 17 (1995) 229.

    PubMed  Google Scholar 

  22. R. B. MARTIN, S. T. LAU, P. V. MATHEWS, V. A. GIVSON and S. M. STOVER, J. Biomech. 29 (1996) 1515.

    PubMed  Google Scholar 

  23. A. SIMKIN and G. ROBIN, J. Biomech. 6 (1973) 31.

    PubMed  Google Scholar 

  24. A. ASCENZI, P. BASCHEIRI and A. BENVENUTI, ibid. 23 (1990) 763.

    PubMed  Google Scholar 

  25. V. ZIV, H. D. WAGNER and S. WEINER, Bone 18 (1996) 417.

    PubMed  Google Scholar 

  26. J. D. CURREY, J. Anat. 98 (1959) 87.

    Google Scholar 

  27. D. B. BURR, M. B. SCHAFFLER and R. G. FREDRICKSON, J. Biomech. 21 (1988) 939.

    PubMed  Google Scholar 

  28. D. D. THOMPSON, J. G. SEEDOR, H. QUARTUCCIO, H. SOLOMON, C. FIORAVANTI, J. DAVIDSON, H. KLEIN, R. JACKSON, J. CLAIR, D. FRANKENFIELD, E. BROWN, H. A. SIMMONS and G. A. RODAN, J. Bone Min. Res. 7 (1992) 951.

    Google Scholar 

  29. R. BALENA, B. C. TOOLAN, M. SHEA, A. MARKATOS, E. R. MYERS, S. C. LEE, E. E. OPAS, J. G. SEEDOR, H. KLE IN, D. FRANKENFIELD, H. QUARTUCCIO, C. FIORAVANT I, J. CLAIR, E. BROWN, W. C. HAYES and G. A. RODAN, J. Clin. Invest. 92 (1993) 2577.

    PubMed  Google Scholar 

  30. A. H. BURSTEIN, J. D. CURREY, V. H. FRANKEL and D. T. REILLY, J. Biomech. 5 (1972) 35.

    PubMed  Google Scholar 

  31. T. S. KELLER, Z. MAO and D. M. SPENGLER, J. Orthop. Res. 8 (1990) 592.

    PubMed  Google Scholar 

  32. D. D. MOYLE and R. W. BOWDEN, J. Biomech. 17 (1984) 203.

    PubMed  Google Scholar 

  33. D. T. REI LLY and A. H. BURSTEIN, ibid. 8 (1975) 393.

    PubMed  Google Scholar 

  34. R. F. KER and P. ZIOUPOS, Comments Theor. Biol. 4 (1997) 151.

    Google Scholar 

  35. W. T. DEMPSTER and R. T. LIDDICOAT, Amer. J. Anat. 91 (1952) 331.

    PubMed  Google Scholar 

  36. W. BONFIELD and M. D. GRYNPAS, Nature 270 (1977) 453.

    PubMed  Google Scholar 

  37. J. L. KATZ, ibid. 283 (1980) 106.

    PubMed  Google Scholar 

  38. J. D. CURREY, Phil. Trans. R. Soc. Lond. B 304 (1984) 509.

    Google Scholar 

  39. C. H. TURNER, A. CHARDRAN and R. M. V. PIDAPARTI, Bone 17 (1995) 85.

    PubMed  Google Scholar 

  40. J. L. KATZ, H. S. YOON, S. LIPSOM, R. MAHARIDGE, A. MEUNIER and P. CHRISTEL, Calcif. Tissue Int. 36 (1984) S31.

  41. Idem., J. Biomech. 23 (1990) 837.

    PubMed  Google Scholar 

  42. V. ZIV, I. SABANAY, T. ARAD, W. TRAUB and S. WEINER, Microsc. Res. Tech. 33 (1996) 203.

    PubMed  Google Scholar 

  43. J. D. CURREY, Quart. J. Microscope Sci. 103 (1962) 111.

    Google Scholar 

  44. G. CORONDAN and W. L. HAWORTH, J. Biomech. 19 (1986) 207.

    PubMed  Google Scholar 

  45. K. PIEKARSKI, J. Applied. Phys. 41 (1970) 215.

    Google Scholar 

  46. J. L. KATZ and A. A. MEUNIER, J. Mater. Sci. Mater. Med. 1 (1990) 1.

    Google Scholar 

  47. N. SASAKI, T. IKAWA and A. FUKUDA, J. Biomech. 24 (1991) 57.

    PubMed  Google Scholar 

  48. H. D. WAGNER and S. WEINER ibid. 25 (1992) 1311.

    Google Scholar 

  49. J. D. CURREY, K. BREAR and P. ZIOUPOS, ibid. 27 (1994) 885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Wagner, H.D. & Weiner, S. Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia. Journal of Materials Science: Materials in Medicine 11, 49–60 (2000). https://doi.org/10.1023/A:1008989719560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008989719560

Keywords

Navigation