Skip to main content
Log in

Plasmin Activation System in Restenosis: Role in Pathogenesis and Clinical Prediction?

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

During recent years it has become increasingly recognized that the plasmin activation system is involved in the development of atherosclerosis and restenosis. Responsible pathophysiologic mechanisms, however, remain elusive. This review focuses primarily on the clinicians, point of view, suggesting that increases in plasminogen activator inhibitor type-1 (PAI-1) plasma levels after balloon angioplasty or permanently elevated lipoprotein (a) (Lp(a)) plasma levels might be helpful in the prediction of restenosis after coronary angioplasty. In contrast, tissue-type plasminogen activator (tPA) plasma levels appear unrelated to restenosis, and data regarding a possible role of urokinase-type plasminogen activator (uPA) in circulation are not available at present. Furthermore, a new hypothesis on the pathophysiological role of local PAI-1 overexpression as a beneficial negative feedback mechanism to limit excess cellular proliferation in atherogenesis and restenosis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: Serial angioplasty follow-up of 229 patients. J Am Coll Cardiol 1988;12:616–623.

    Google Scholar 

  2. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: A time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 1988;77:361–371.

    Google Scholar 

  3. Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH. Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990;15:1667–1687.

    Google Scholar 

  4. Libby P, Schwartz D, Brogi E, Tanaka H, Clinton SK. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation 1992;86(Suppl 6): III47–III52.

    Google Scholar 

  5. Marmur JD, Poon M, Rossikhina M, Taubman MB. Induction of PDGF-responsive genes in vascular smooth muscle. Implications for the early response to vessel injury. Circulation 1992;86(Suppl. 6):PIII53–III60.

    Google Scholar 

  6. Le Breton H, Plow EF, Topol EJ. Role of platelets in restenosis after percutaneous coronary revascularization. J Am Coll Cardiol 1996;28:1643–1651.

    Google Scholar 

  7. Bachmann F. The plasminogen-plasmin enzyme system. In: Colman RW, Hirsh J, Marder VJ, Salzman EW, eds. Haemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: J.B. Lippincott, 1994:1592–1622.

    Google Scholar 

  8. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/ plasmin system. J Clin Invest 1991;88:1067–1072.

    Google Scholar 

  9. Jansson JH, Nilsson TK, Olofsson BO. Tissue plasminogen activator and other risk factors as predictors of cardiovascular events in patients with severe angina pectoris. Eur Heart J 1991;12:157–161.

    Google Scholar 

  10. Jansson JH, Olofsson BO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on longterm mortality in patients with coronary artery disease. A 7-year follow-up. Circulation 1993;88:2030–2034.

    Google Scholar 

  11. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993;341: 1165–1168.

    Google Scholar 

  12. Wieczorek I, Ludlam CA, Fox KA. Tissue-type plasminogen activator and plasminogen activator inhibitor activities as predictors of adverse events in unstable angina. Am J Cardiol 1994;74:424–429.

    Google Scholar 

  13. Geppert A, Graft S, Beckman R, et al. Mass concentration of endogenous tPA in coronary artery disease: Relation to coronary risk factors, thrombotic events and aspirin treatment. Arterioscler Thromb Vasc Biol 1998;18:1634–1642.

    Google Scholar 

  14. Speiser W, Speiser P, Minar E, et al. Activation of coagulation and fibrinolysis in patients with arteriosclerosis: Relation to localization of vessel disease and risk factors. Thromb Res 1990;59:77–88.

    Google Scholar 

  15. Geppert A, Beckmann R, Graf S, et al. Tissue-type plasminogen activator and type-1 plasminogen activator inhibitor in patients with coronary artery disease: Relation to clinical variables and cardiovascular risk factors. Fibrinolysis 1995;9(Suppl. I):109–113.

    Google Scholar 

  16. Reidy MA, Irvin C, Lindner V. Migration of arterial wall cells. Expression of plasminogen activators and inhibitors in injured rat arteries. Circ Res 1996;78:405–414.

    Google Scholar 

  17. Okada SS, Grobmyer SR, Barnathan ES. Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol 1996; 16:1269–1276.

    Google Scholar 

  18. Wijnberg MJ, Quax PH, Nieuwenbroek NM, Verheijen JH. The migration of human smooth muscle cells in vitro is mediated by plasminogen activation and can be inhibited by α2-macroglobulin receptor associated protein. Thromb Haemost 1997;78:880–886.

    Google Scholar 

  19. Robbie LA, Booth NA, Brown AJ, Bennett B. Inhibitors of fibrinolysis are elevated in atherosclerotic plaque. Arterioscler Thromb Vasc Biol 1996;16:539–545.

    Google Scholar 

  20. Shah PK, Amin J. Low high density lipoprotein level is associated with increased restenosis rate after coronary angioplasty. Circulation 1992;85:1279–1285.

    Google Scholar 

  21. Huber K, Jörg M, Probst P, et al. A decrease in plasminogen activator inhibitor-1 activity after successful percutaneous transluminal coronary angioplasty is associated with a significantly reduced risk for coronary restenosis. Thromb Haemost 1992;67:209–213.

    Google Scholar 

  22. Brack MJ, More RS, Pringle S, Gershlick AH. Absence of a prothrombotic state in restenotic patients? Cor Art Dis 1994;5:501–506.

    Google Scholar 

  23. Montalescot G, Ankri A, Vicaut E, Drobinski G, Grosgogeat Y, Thomas D. Fibrinogen after coronary angioplasty is a risk factor for restenosis. Circulation 1995;92:31–38.

    Google Scholar 

  24. Sakata K, Miura F, Sugino H, et al. Impaired fibrinolysis early after percutaneous transluminal coronary angioplasty is associated with restenosis. Am Heart J 1996;131:1–6.

    Google Scholar 

  25. Benchimol D, Bonnet J, Benchimol H, et al. Biological risk factors for restenosis after percutaneous transluminal coronary angioplasty. Int J Cardiol 1993;38:7–18.

    Google Scholar 

  26. Kirschstein W, Simianer S, Dempfle CE, et al. Impaired fibrinolytic capacity and tissue plasminogen activator release in patients with restenosis after percutaneous transluminal coronary angioplasty (PTCA). Thromb Haemost 1989;62:772–775.

    Google Scholar 

  27. Huber K, Beckmann R, Graf S, Geppert A, Probst P, Binder BR. Patients with recurrent restenosis after angioplasty exhibit a permanently decreased fibrinolytic potential. In: Gomez FP, Prentice C, Meyer J, eds, Coronary Thrombosis. New York: Raven Press, 1993:159–163.

    Google Scholar 

  28. Stegnar M, Mavri A. Reproducibility of fibrinolytic response to venous occlusion in healthy subjects. Thromb Haemost 1995;73:453–457.

    Google Scholar 

  29. Huber K, Kirchheimer JC, Ermler D, Bell C, Binder Br. Determination of plasma urokinase-type plasminogen activator antigen in patients with primary liver cancer: Characterization as tumor-associated antigen and comparison with alpha-fetoprotein. Cancer Res 1992;52:1717–1720.

    Google Scholar 

  30. Huber K, Kirchheimer JC, Sedlmayer A, Bell C, Ermler D, Binder BR. Clinical value of determination of urokinasetype plasminogen activator antigen in plasma for detection of colorectal cancer: Comparison with circulating tumor-associated antigens CA 19–9 and carcinoembryonic antigen. Cancer Res 1993;53:1788–1793.

    Google Scholar 

  31. Markus G. The relevance of plasminogen activators to neoplastic growth. A review of recent literature. Enzyme 1988;40:158–172.

    Google Scholar 

  32. Carroll V, Hattey E, Beckmann R, Griffiths MR, Huber K, Binder BR. Plasma levels of uPA and scuPA in patients suffering from coronary artery disease. Fibrinolysis 1994;8:139 (abstract 392).

    Google Scholar 

  33. Carmeliet P, Collen D. Gene targeting and gene transfer studies of the biological role of the plasminogen/plasmin system. Thromb Haemost 1995;74:429–436.

    Google Scholar 

  34. van Leeuwen RT. Extracellular proteolysis and the migrating vascular smooth muscle cell. Fibrinolysis 1996;10:59–74.

    Google Scholar 

  35. Berg KA. A new serum type system in man — The Lp system. Acta Pathol Microbiol Scand 1963;59:369–382.

    Google Scholar 

  36. Kostner GM, Avogaro P, Cazzolato G, Marth E, Bittolo-Bon G, Qunici GB. Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis 1981;38:51–61.

    Google Scholar 

  37. Armstrong VW, Cremer P, Eberle E, et al. The association between serum Lp(a) concentrations and angiographically assessed coronary atherosclerosis. Atherosclerosis 1986;62: 249–257.

    Google Scholar 

  38. Dahlen GH, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto AM, Jr. Association of levels of lipoproteins Lp(a), plasma lipids and other lipoproteins with coronary artery disease documented by angiography. Circulation 1986;74: 758–765.

    Google Scholar 

  39. Eaton DL, Fless GM, Kohr WJ, et al. Partial amino acid sequence of apolipoprotein (a) shows that it is homologous to plasminogen. Proc Natl Acad Sci USA 1987;84:3224–3228.

    Google Scholar 

  40. McConathy WJ, Trieu VN. Lp(a) interactions. Prog Lipid Res 1991;30:195–203.

    Google Scholar 

  41. Hajjar KA, Gavish D, Breslow JL, Nachman RL. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 1989;339:303–305.

    Google Scholar 

  42. Miles LA, Fless GM, Levin EG, Scanu AM, Plow EF. A potential basis for the thrombotic risks associated with lipoprotein (a). Nature 1989;339:301–303.

    Google Scholar 

  43. Harpel PC, Gordon BR, Parker TS. Plasmin catalyzes binding of lipoprotein(a) to immobilized ~brinogen and fibrin. Proc Natl Acad Sci USA 1989;86:3847–3851.

    Google Scholar 

  44. Hearn JA, Donohue BC, Ba'albaki H, et al. Usefulness of serum lipoprotein (a) as a predictor of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol 1992;69:736–739.

    Google Scholar 

  45. Tenda K, Saikawa T, Maeda T, et al. The relationship between serum lipoprotein (a) and restenosis after initial elective percutaneous transluminal coronary angioplasty. Jpn Circ J 1993;57:789–795.

    Google Scholar 

  46. Desmarais RL, Sarembock IJ, Ayers CR, Vernon SM, Powers ER, Gimple LW. Elevated serum lipoprotein(a) is a risk factor for clinical recurrence after coronary balloon angioplasty. Circulation 1995;91:1403–1409.

    Google Scholar 

  47. Yamamoto H, Imazu M, Yamabe T, Ueda H, Hattori Y, Yamakido M. Risk factors for restenosis after percutaneous transluminal coronary angioplasty: Role of lipoprotein (a). Am Heart J 1995;130:1168–1173.

    Google Scholar 

  48. Miyata M, Biro S, Armina S, et al. High serum concentration of lipoprotein (a) is a risk factor for restenosis after percutaneous transluminal coronary angioplasty in Japanese patients with single-vessel disease. Am Heart J 1996;132: 269–273.

    Google Scholar 

  49. Kotamäki M, Laustiola K, Syvänne M, Heikkilä J. Influence of continued smoking and some biological risk factors on restenosis after percutaneous transluminal coronary angioplasty. J Intern Med 1996;240:293–301.

    Google Scholar 

  50. van Bockxmeer FM, Mamotte CD, Gibbsons FR, Taylor RR. Apolipoprotein epsilon 4 homozygosity — a determinant of restenosis after coronary angioplasty. Atherosclerosis 1994; 110:195–202.

    Google Scholar 

  51. Cooke T, Sheahan R, Foley D, et al. Lipoprotein (a) in restenosis after percutaneous transluminal coronary angioplasty and coronary artery disease. Circulation 1994;89: 1593–1598.

    Google Scholar 

  52. Ishikawa Y, Fujioka Y, Kitagawa Y, et al. Restenosis after percutaneous transluminal coronary angioplasty in the elderly—risk factor analysis. Nippon Ronen Igakkai Zasshi 1995;32:491–496.

    Google Scholar 

  53. Bussiere JL, Bourayne J, Monsegu J, et al. Is plasma lipoprotein (a) level a reliable indicator predicting restenosis after angioplasty? Arch Mal Coeur Vaiss 1996;89:425–429.

    Google Scholar 

  54. Kanemitsu S, Tekekoshi N, Murakami E. Effects of LDL apheresis on restenosis after angioplasty. Chem Phys Lipids 1994;67–68:339–343.

    Google Scholar 

  55. Daida H, Lee YJ, Yokoi H, et al. Prevention of restenosis after percutaneous transluminal coronary angioplasty by reducing lipoprotein (a) levels with low-density lipoprotein apheresis. Low Density Lipoprotein Apheresis Angioplasty Restenosis Trial (L-ART) Group. Am J Cardiol 1994; 73:1037–1040.

    Google Scholar 

  56. Liu AC, Lawn RM. Vascular interactions of lipoprotein (a). Curr Opin Lipidol 1994;5:269–273.

    Google Scholar 

  57. Hamsten A, Wiman B, de Faire U, Blombaeck M. Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 1985;313:1557–1563.

    Google Scholar 

  58. Paramo JA, Colucci M, Collen D, van de Werf F. Plasminogen activator in the blood of patients with coronary artery disease. Br Med J Clin Res Ed 1985;291:573–574.

    Google Scholar 

  59. Hamsten A, Blombaeck M, Wiman B, et al. Haemostatic function in myocardial infarction. Br Heart J 1986;55:58–66.

    Google Scholar 

  60. Hamsten A, de Faire U, Walldius G, et al. Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction. Lancet 1987;2:3–9.

    Google Scholar 

  61. Oseroff A, Krishnamurti C, Hassett A, Tang D, Alving B. Plasminogen activator and plasminogen activator inhibitor activities in men with coronary artery disease. J Lab Clin Med 1989;113:88–93.

    Google Scholar 

  62. Huber K, Resch I, Stefenelli T, et al. Plasminogen activator inhibitor-1 levels in patients with chronic angina pectoris with or without angiographic evidence of coronary sclerosis. Thromb Haemost 1990;63:336–339.

    Google Scholar 

  63. Dawson S, Henney A. The status of PAI-1 as a risk factor for arterial and thrombotic disease: A review. Atherosclerosis 1992;95:105–117.

    Google Scholar 

  64. Ishiwata S, Tukada T, Nakanishi S, Nishiyama S, Seki A. Postangioplasty restenosis: Platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis. Am Heart J 1997;133:387–392.

    Google Scholar 

  65. Ishiwata S, Nakanishi S, Nishiyama S, Seki A. Prevention of restenosis by beza~brate after successful coronary angioplasty. Cor Art Dis 1995;6:883–889.

    Google Scholar 

  66. Huber K, Binder BR. Plasminogen activator inhibitor-1 plasma levels and coronary restenosis. Circulation 1992;86: 1661–1662.

    Google Scholar 

  67. Lins M, Zuborn KH, Dau O, et al. Coagulation activation in patients undergoing directional coronary atherectomy. Thromb Res 1997;86:433–441.

    Google Scholar 

  68. Schneiderman J, Sawdey MS, Keeton MR, et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 1992;89:6998–7002.

    Google Scholar 

  69. Loskutoff DJ, Sawdey M, Keeton M, Schneiderman J. Regulation of PAI-1 expression in vivo. Thromb Haemost 1993;70:135–137.

    Google Scholar 

  70. Lupu F, Bergonzelli GE, Heim DA, et al. Localization and production of plasminogen activator inhibitor-1 in human healthy and atherosclerotic arteries. Arterioscler Thromb 1993;13:1090–1100.

    Google Scholar 

  71. Wojta J, Gallicchio M, Zoellner H, et al. Thrombin stimulates expression of tissue-type plasminogen activator and plasminogen activator inhibitor type 1 in cultured human vascular smooth muscle cells. Thromb Haemost 1993;70:469–474.

    Google Scholar 

  72. Noda-Heiny H, Fujii S, Sobel BE. Induction of vascular smooth muscle cell expression of plasminogen activator inhibitor-1 by thrombin. Circ Res 1993;72:36–43.

    Google Scholar 

  73. Reilly CF, McFall RC. Platelet-derived growth factor and transforming growth factor-β regulate plasminogen activator inhibitor-1 synthesis in vascular smooth muscle cells. J Biol Chem 1991;266:9419–9427.

    Google Scholar 

  74. Sawa H, Lundgren C, Sobel BE, Fujii S. Increased intramural expression of plasminogen activator inhibitor type 1 after balloon injury: A potential progenitor of restenosis. J Am Coll Cardiol 1994;24:1742–1748.

    Google Scholar 

  75. Christ G, Hufnagl P, Kaun C, et al. Antifibrinolytic properties of the vascular wall. Dependence on the history of smooth muscle cell doublings in vitro and in vivo. Arterioscler Thromb Vasc Biol 1997;17:723–730.

    Google Scholar 

  76. Christ G, Seiffert D, Hufnagl P, et al. Type 1 plasminogen activator inhibitor synthesis of endothelial cells is down-regulated by smooth muscle cells. Blood 1993;81:1277–1283.

    Google Scholar 

  77. Carmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: A gene targeting and gene transfer study in mice. Circulation 1997;96:3180–3191.

    Google Scholar 

  78. Loskutoff DJ. PAI-1 inhibits neointimal formation after arterial injury in mice. Circulation 1997;96:2772–2774.

    Google Scholar 

  79. Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin avb3 binding to vitronectin. Nature 1996;383:441–443.

    Google Scholar 

  80. He CS, Wilhelm SM, Pentlanf AP, Marmer BL, Grant GA, Eisen AZ, Goldberg GI. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci USA 1989;86:2632–2636.

    Google Scholar 

  81. Koutsilieris M, Frenette G, Lazure C, Lehoux JG, Govindan MV, Polychronakos C. Urokinase-type plasminogen activator: A paracrine factor regulating the bioavailability of IGFs in PA-III cell-induced osteoblastic metastases. Anticancer Res 1993;13:481–486.

    Google Scholar 

  82. Tkachuk V, Stepanova V, Little PJ, Bobik A. Regulation and role of urokinase plasminogen activator in vascular remodelling. Clin Exp Pharmacol Physiol 1996;23:759–765.

    Google Scholar 

  83. Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB. Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: A self-regulating system. J Cell Biol 1990;111:757–763.

    Google Scholar 

  84. Rifkin DB, Moscatelli D, Bizik J, et al. Growth factor control of extracellular proteolysis. Cell Differ Dev 1990;32:313–318.

    Google Scholar 

  85. Lauffenburger DA. Making connections count. Nature 1996;383:390–391.

    Google Scholar 

  86. Kirchheimer JC, Wojta J, Christ G, Binder BR. Proliferation of a human epidermal tumor cell line stimulated by urokinase. FASEB J 1987;1:125–128.

    Google Scholar 

  87. Kirchheimer JC, Wojta J, Christ G, Binder BR. Functional inhibition of endogenously produced urokinase decreases cell proliferation in a human melanoma cell line. Proc Natl Acad Sci USA 1989;86:5424–5428.

    Google Scholar 

  88. Rabbani SA, Mazar AP, Bernier SM, et al. Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J Biol Chem 1992;267:14151–14156.

    Google Scholar 

  89. He CJ, Rebibou JM, Peraldi MN, Meulders Q, Rondeau E. Growth factor-like effect of urokinase type plasminogen activator in human renals cells. Biochem Biophys Res Commun 1991;176:1408–1416.

    Google Scholar 

  90. Stefansson S, Lawrence DA, Argraves WS. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptorrelated proteins 1 and 2. J Biol Chem 1996;271:8215–8220.

    Google Scholar 

  91. Waltz DA, Sailor LZ, Chapman HA. Cytokines induce urokinase-dependent adhesion of human myeloid cells: A regulatory role for plasminogen activator inhibitors. J Clin Invest 1993;91:1541–1552.

    Google Scholar 

  92. Gallicchio M, Hufnagl P, Wojta J, Tipping P. IFN-inhibits thrombin-and endotoxin-induced plasminogen activator inhibitor type 1 in human endothelial cells. J Immunol 1996; 157:2610–2617.

    Google Scholar 

  93. Kirchheimer JC, Binder BR, Remold HG. Matrix-bound plasminogen activator inhibitor type 1 inhibits the invasion of monocytes into interstitial tissue. J Immunol 1990;145: 1518–1522.

    Google Scholar 

  94. Lundgren CH, Sawa H, Sobel BE, Fujii S. Modulation of expression of monocyte/macrophage plasminogen activator activity and its implications for attenuation of vasculopathy. Circulation 1994;90:1927–1934.

    Google Scholar 

  95. Gottsauner-Wolf M, Sochor H, Hornykewycz S, et al. Predictive value of PAI-1 plasma activity and thallium perfusion imaging for restenosis after percutaneous transluminal angioplasty in clinically asymptomatic patients. Thromb Haemost 1999; April, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, G., Kostner, K., Zehetgruber, M. et al. Plasmin Activation System in Restenosis: Role in Pathogenesis and Clinical Prediction?. J Thromb Thrombolysis 7, 277–285 (1999). https://doi.org/10.1023/A:1008983110941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008983110941

Navigation