Skip to main content

A simple non-parametric GIS model for predicting species distribution: endemic birds in Bioko Island, West Africa

Abstract

Species mapping is a useful conservation tool for predicting patterns of biological diversity, or identifying geographical areas of conservation significance. Mapping can also improve our understanding of the appropriateness of habitat areas for individual species. We outline a computer-based methodology, PREDICT, for the analysis of the habitat requirements of species in a combined GIS-statistical programming environment. The paper details the statistical background to the approach adopted, the program structure and input file information and then applies these techniques to bird data from Bioko Island, West Africa. It produces images and statistics that assess the potential of unstudied areas for wildlife for which presence/absence data and basic habitat information are available. Suitability for target species is determined within surveyed and non-surveyed squares by a form of weights of evidence. The program measures the degree of association between habitat factors and presence/absence of target species by means of χ2 tests. The overall suitability weighting of each square, as the sum of all individual habitat factor weightings, is finally displayed in maps depicting areas of highly suitable, suitable, unsuitable and highly unsuitable habitat. Statistical relations between vegetation, rainfall and landscape features on Bioko Island and the location of 9 endemic bird taxa are presented herein. Final confirmation of the accuracy of predictions of the studied bird taxa will ensue from future field observations. However, in a series of misclassification tests of the program, actual distribution detection rate was in excess of 90%. The use of PREDICT can guide investigations of little known species in remote areas and provide a practical solution to identify areas of high rare species diversity in need of conservation.

This is a preview of subscription content, access via your institution.

References

  1. Akçcakaya HR (1996) RAMASşR Metapop: Viability Analysis for Stage-Structured Metapopulations (Version 2.0). Applied Biomathematics, Setauket, New York

    Google Scholar 

  2. Bailey RG and Hogg HC (1986) A world ecoregions map for resource reporting. Environmental Conservation 13: 195–203

    Google Scholar 

  3. Bonham-Carter GF (1994) Geographic Information Systems for Geoscientists. Pergamon Press, Oxford

    Google Scholar 

  4. Butterfield BR, Csuti B and Scott JM (1994) Modelling vertebrate distributions for gap analysis. In: Miller RI (ed) Mapping the Diversity of Nature, pp 53–68. Chapman & Hall, London

    Google Scholar 

  5. Fa JE (1992) Conservaciön de los Ecosistemas Forestales en Guinea Ecuatorial. IUCN, Gland and Cambridge

    Google Scholar 

  6. Fa JE and Morales LM (1993) Patterns of mammalian diversity in Mexico. In: Ramamoorthy TP, Bye R, Lot A and Fa JE (eds) The Biological Diversity of Mexico, pp 319–364. Oxford University Press, New York and Oxford

    Google Scholar 

  7. FED/DHV (1990) Proyecto de Rehabilitaciön de Cacao. Isla De Bioco. Uso Actual y Potential de las Tierras. Repùblica de Guinea Ecuatorial. Ministerio de Agricultura, Ganadería, Pesca y Forestal. Unpublished document, Malabo

    Google Scholar 

  8. Fish and Wildlife Service (1981) Standards for the Development of Suitability Index Models. Ecological Services Manual 103. US Department of the Interior, Fish and Wildlife Service, Division of Ecological Services. Government Printing Office, Washington, DC

    Google Scholar 

  9. IGN (1979) Repùblica de Guinea Ecuatorial: Provincia de Bioco. Mapa Topogràfico Escala 1: 100.000. Instituto Geogràfico Nacional de España, Madrid

    Google Scholar 

  10. Juste J (1992) Zonaciön Ecolögica y Evaluaciön del Impacto Ambiental de los Usos Actuales de la Ísla de Bioco. Proyecto UTF/EQG/002/EQG, FAO, Malabo

    Google Scholar 

  11. Juste J and Fa JE (1994) Biodiversity conservation in the Gulf of Guinea islands: taking stock and preparing action. Biodiversity and Conservation 3: 759–771

    Google Scholar 

  12. Lancia R, Adams DA and Lunk EM (1986) Temporal and spatial aspects of species-habitat models. In: Verner J, Morrison ML and John Ralph C (eds) Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates, pp 65–70. The University of Wisconsin Press, Wisconsin

    Google Scholar 

  13. Miller RI (1994) Setting the scene. In: Miller RI (ed) Mapping the Diversity of Nature, pp 3–18. Chapman & Hall, London

    Google Scholar 

  14. Miller RI, Stuart SN and Howell KM (1989) A methodology for analyzing rare species distribution patterns utilizing GIS technology: the rare birds of Tanzania. Landscape Ecology 2: 173–189

    Google Scholar 

  15. Morrison ML, Marcot BG and Mannan RW (1992) Wildlife-habitat relationships. Wisconsin University Press, Wisconsin

    Google Scholar 

  16. O'Brien LG (1989) The Statistical Analysis of Contingency Table Designs. CATMOG 51, Environmental Publications, University of East Anglia

  17. Ocaña Garcia M (1961) Factores que influencian la distribuciön de la vegetaciön en Fernando Poo. Anales del Instituto de Estudios Africanos 55: 67–85

    Google Scholar 

  18. Osborne PE and Tigar BJ (1992) Interpreting bird atlas data using logistic models: An example from Lesotho, Southern Africa. Journal of Applied Ecology 29: 55–62

    Google Scholar 

  19. Perez del Val J (1994) Contribuciön al Conocimiento de la Historia Natural de la Avifàuna de la Isla de Bioko (Guinea Ecuatorial). PhD thesis. Universidad de Leon, Spain

    Google Scholar 

  20. Scott JM, Davis F, Csuti B, et al. (1993) Gap analysis: a geographic approach to protection of biological diversity. Wildlife Monographs 123: 1–41

    Google Scholar 

  21. Unwin DJ (1995) Map overlay in GIS as a statistical problem. In: Fischer M, Schoten HJ and Unwin DJ (eds) Analytical Perspectives on GIS in the Environmental and Socio-Economic Sciences, pp 65–70. Taylor and Francis, London

    Google Scholar 

  22. Walker PA (1990) Modelling wildlife distributions using a geographic information system: kangaroos in relation to climate. Journal of Biogeography 17: 279–289

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lenton, S.M., Fa, J.E. & Del Val, J.P. A simple non-parametric GIS model for predicting species distribution: endemic birds in Bioko Island, West Africa. Biodiversity and Conservation 9, 869–885 (2000). https://doi.org/10.1023/A:1008980910283

Download citation

  • Bioko Island
  • endemic birds
  • GIS
  • habitat suitability