Skip to main content
Log in

The Influence of Fibre Volume Fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinyl Ester Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper investigates the influence of fibre volume fraction on the mode I interlaminar fracture toughness G Ic of a glass-fibre/vinyl ester composite. Two fibre volume fraction parameters are defined; a global value for the composite specimen and a value for the fibre-dense intralaminar regions. The range of global fibre volume fraction studied was 32–52 %. Results show that G Ic values for crack initiation are independent of fibre volume fraction and similar to matrix resin G Ic . Variations in the G Ic for steady-state crack propagation, and the amount of fibre bridging, are not completely explained by changes in global fibre volume fraction. Instead they are consistent with fibre volume fraction in the fibre-dense intralaminar regions, through which the crack preferred to grow. It is concluded that this latter parameter is more relevant for G Ic characterisation as a function of fibre volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protocols for Interlaminar Fracture Testing of Composites, European Structural Integrity Society (ESIS), Delft, The Netherlands, 1993.

  2. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM D5528-94a, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1994.

  3. Testing Methods for Interlaminar Fracture Toughness of Carbon Fibre Composites. JIS K7086-1993, Japanese Industrial Standards Group, Tokyo, Japan, 1993.

  4. Williams, J. G., Davies, P., and Brunner, A. J., 'Standard Test for the Toughness of Composite Laminates — Some Bones of Contention', Proc. ICCM-10, A Poursartip and K. Street (eds.), Woodhead Publishing Ltd., Whistler B.C., Canada, 1995, Vol. I, pp. 71-75.

    Google Scholar 

  5. Davies, P., 'Round Robin Analysis of G Ic Interlaminar Fracture Test', Applied Composite Materials 5, 1996, 135-140.

    Google Scholar 

  6. Russell, A. J., 'Micromechanisms of Interlaminar Fracture and Fatigue', Polymer Composites 8(5), 1987, 342-351.

    Google Scholar 

  7. Bradley, W. L., 'Relationship of Matrix Toughness to Interlaminar Fracture Toughness', in Application of Fracture Mechanics to Composite Materials, K. Friedrich (ed.), Elsevier, 1989.

  8. Hunston, D. L., Moulton, R. J., Johnston, N. J., and Bascom, W. D., 'Matrix Resin Effects in Composite Delamination: Mode I Fracture Aspects', in Toughened Composites, ASTM STP 937, Norman J. Johnston (ed.), American Society for Testing and Materials, Philadelphia, 1987, pp. 74-94.

    Google Scholar 

  9. Marom, G., Roman, I., Harel, H., Rosensaft, M., Kenig, S., and Moshonov, A., 'The Strain Energy Release Rate of Delamination in Fabric-reinforced Composites', International Journal of Adhesion and Adhesives 8(2), 1998, 85-91.

    Google Scholar 

  10. Davies, P., Cantwell, W., Moulin, C., and Kausch, H.-H., 'A Study of the Delamination Resistance of IM6/PEEK Composites', Composites Science and Technology 36, 1989, 153-166.

    Google Scholar 

  11. Robinson, P. and Song, D. Q., 'A Modified DCB Specimen for Mode I Testing of Multidirectional Laminates', Journal of Composite Materials 26(11), 1992, 1554-1577.

    Google Scholar 

  12. Burchill, P. and Simpson, G., 'Improved Interlaminar Fracture Toughness for Vinyl Ester Resin-Fibre Glass Composites', Proc. ICCM-11, M. Scott (ed.), Woodhead Publishing Ltd., Gold Coast, Australia, 1997, vol. II, 254-262.

    Google Scholar 

  13. Hull, D., An Introduction to Composite Materials, Cambridge University Press, 1981.

  14. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Matertials, ASTM D5045-91a, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1991.

  15. Standard Test Method for Tensile Properties of Plastics, ASTM D638M-91a, American Society for Testing and Materials, Philadelphia, Pennsylvania, 1991.

  16. Matthews, F. L. and Rawlings, R. D., Composite Materials: Engineering and Science, Chapman and Hall, London, 1994.

    Google Scholar 

  17. Hashemi, S., Kinloch, A. J., and Williams, J. G., 'Corrections Needed in Double Cantilever Beam Tests for Assessing the Interlaminar Failure of Composites', Journal of Materials Science Letters 8, 1989, 125-129.

    Google Scholar 

  18. Compston, P. and Jar, P.-Y. B., 'Comparison of Interlaminar Fracture Toughness in Unidirectional and Woven Roving Marine Composites', Applied Composite Materials 5, 1998, 189-206.

    Google Scholar 

  19. Compston, P., Jar, P.-Y. B. and Davies, P., 'Matrix Effect on the Static and Dynamic Interlaminar Fracture Toughness of Glass-Fibre Marine Composites', Composites Part B 29B, 1998, 505-516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compston, P., Jar, PY.B. The Influence of Fibre Volume Fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinyl Ester Composite. Applied Composite Materials 6, 353–368 (1999). https://doi.org/10.1023/A:1008973211347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008973211347

Navigation