Journal of Computational Neuroscience

, Volume 7, Issue 2, pp 149–171 | Cite as

A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models

  • Michael C. Vanier
  • James M. Bower


One of the most difficult and time-consuming aspects of building compartmental models of single neurons is assigning values to free parameters to make models match experimental data. Automated parameter-search methods potentially represent a more rapid and less labor-intensive alternative to choosing parameters manually. Here we compare the performance of four different parameter-search methods on several single-neuron models. The methods compared are conjugate-gradient descent, genetic algorithms, simulated annealing, and stochastic search. Each method has been tested on five different neuronal models ranging from simple models with between 3 and 15 parameters to a realistic pyramidal cell model with 23 parameters. The results demonstrate that genetic algorithms and simulated annealing are generally the most effective methods. Simulated annealing was overwhelmingly the most effective method for simple models with small numbers of parameters, but the genetic algorithm method was equally effective for more complex models with larger numbers of parameters. The discussion considers possible explanations for these results and makes several specific recommendations for the use of parameter searches on neuronal models.

parameter search compartmental model genetic algorithm simulated annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldi, PF, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J. Comput. Neurosci. 5: 285–314.Google Scholar
  2. Banks MI, Haberly LB, Jackson MB (1996) Layer-specific properties of the transient K-current (I-A) in piriform cortex. J. Neurosci. 16(12): 3862–3876.Google Scholar
  3. Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory-bulb. J. Neurophysiol. 69(6): 1948–1965.Google Scholar
  4. Bower JM, Beeman D (1995) The Book of Genesis. Springer Verlag, New York.Google Scholar
  5. Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J. Neurosci. Methods 46: 159–166.Google Scholar
  6. Buzsaki G, Kandel A (1998) Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79(3): 1587–1591.Google Scholar
  7. Constanti A, Galvan M, Franz P, Sim JA (1985) Calcium-dependent inward currents in voltage-clamped guinea-pig olfactory cortex neurons. Pflugers Archiv European J. Physiol. 404(3): 259–265.Google Scholar
  8. DeSchutter E, Bower JM (1994a) An active membrane model of the cerebellar Purkinje cell I. Simulation of current clamps in slice. J. Neurophysiol. 71: 375–400.Google Scholar
  9. DeSchutter E, Bower JM (1994b) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol. 71: 401–419.Google Scholar
  10. Eichler-West R, Wilcox G (1997) Robust parameter selection for compartmental models of neurons using evolutionary algorithms. In: JM Bower, ed. Computational Neuroscience: Trends in Research 1997. Plenum Publishing, New York.Google Scholar
  11. Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin-Huxley models. J. Neurophysiol. 70(6): 2502–2518.Google Scholar
  12. French CR, Sah P, Buckett KJ, Gage PW (1990) Avoltage-dependent persistent sodium current in mammalian hippocampal-neurons. J. General Physiol. 95(6): 1139–1157.Google Scholar
  13. Galvan M, Constanti A, Franz P (1985) Calcium-dependent actionpotentials in guinea-pig olfactory cortex neurons. Pflugers Archiv European J. Physiol. 404(3): 252–258.Google Scholar
  14. Goddard N, Hood G (1997) Parallel genesis for large scale modeling. In: JM Bower, ed. Computational Neuroscience: Trends in Research 1997. Plenum Publishing, New York, pp. 911–917..Google Scholar
  15. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA.Google Scholar
  16. Halliwell JV, Scholfield CN (1984) Somatically recorded Ca-currents in guinea-pig hippocampal and olfactory cortex neurons are resistant to adenosine action. Neurosci. Letters 50(1–3): 13–18.Google Scholar
  17. Hille B (1992) Ionic Channels of Excitable Membranes (2nd ed.). Sinauer Associates, Sunderland, MA.Google Scholar
  18. Holland JH (1992) Adaptation in Natural and Artificial Systems (2nd ed.). The MIT Press, Cambridge, MA.Google Scholar
  19. Holmes WR, Rall W (1992a) Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J. Neurophysiol. 68(4): 1421–1437.Google Scholar
  20. Holmes WR, Rall W (1992b) Estimating the electrotonic structure of neurons with compartmental models. J. Neurophysiol. 68(4): 1438–1452.Google Scholar
  21. Jack JJB, Noble D, Tsien RW (1983) Electric Current Flow in Excitable Cells. Clarendon Press, Oxford.Google Scholar
  22. Keeping ES (1995) Introduction to Statistical Inference. Dover, New York.Google Scholar
  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598): 671–680.Google Scholar
  24. Koch C, Segev I (1989) Methods in Neuronal Modeling. MIT Press, Cambridge, MA.Google Scholar
  25. Koch C, Segev I (1997) Methods in Neuronal Modeling (2nd ed.). MIT Press, Cambridge, MA.Google Scholar
  26. Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.Google Scholar
  27. Lemasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259(5103): 1915–1917.Google Scholar
  28. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268(5208): 301–304.Google Scholar
  29. Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15(6): 1427–1439.Google Scholar
  30. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54(4): 782–806.Google Scholar
  31. McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68(4): 1384–1400.Google Scholar
  32. Mitchell M (1996) An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.Google Scholar
  33. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C (2nd ed.). Cambridge University Press, New York.Google Scholar
  34. Rall W (1995) The Theoretical Foundation of Dendritic Function. MIT Press, Cambridge, MA.Google Scholar
  35. Rall W, Burke RE, Holmes WR, Jack JJB, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol. Revi. 72(4): S159–S186.Google Scholar
  36. Rinzel J (1985) Excitation Dynamics: Insights from Simpli-fied Membrane Models. Federation Proceedings 44(15): 2944–2946.Google Scholar
  37. Staley KJ, Otis TS, Mody I (1992) Membrane-properties of dentate gyrus granule cells: A comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol. 67(5): 1346–1358.Google Scholar
  38. Tawfik B, Durand DM (1994) Nonlinear parameter-estimation by linear association—application to a 5-parameter passive neuron model. IEEE Transactions on Biomed. Eng., 41(5): 461–469.Google Scholar
  39. Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66(2): 635–650.Google Scholar
  40. Vanier M, Bower J (1996) A comparison of automated parametersearching methods for neural models. In: JM Bower, ed. Proceedings of the 1995 Computational Neuroscience Conference (CNS*95), Monterey (CA). Academic Press, New York.Google Scholar
  41. White JA, Manis PB, Young ED (1992) The parameter-identification problem for the somatic shunt model. Biol. Cybernetics 66(4): 307–318.Google Scholar
  42. Zhang L, Krnjeviéc K (1993) Whole-cell recording of anoxic effects on hippocampal neurons in slices. J. Neurophysiol. 69: 118–127.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael C. Vanier
    • 1
  • James M. Bower
    • 1
  1. 1.Department of Computation and Neural SystemsCalifornia Institute of TechnologyPasadena

Personalised recommendations