Skip to main content
Log in

Expression and crystallization of a Cry3Aa–Cry1Ac chimerical proteinof Bacillus thuringiensis

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The insecticidal Cry1 proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene was constructed with the coding regions of the Cry3Aa protein's toxic domain, and of the Cry1Ac protoxin's C-terminal fragment. This chimerical construction expressed a truncated (∼70 kDa) protein in the acrystalliferous strain 4Q7 of B. thuringiensis, assembled in spherical to amorphous parasporal crystals. This protein was recognized only by antibodies raised against the Cry3Aa protein. When the protease-deficient mutant BL21 of Escherichia coli was transformed with the same chimerical construction, a complete (∼140 kDa) chimerical protein was expressed. However, the formation of a crystalline inclusion was unclear. This protein was recognized by antibodies raised against the proteins Cry1Ac and Cry3Aa. Both chimerical proteins showed toxicity against larvae of Leptinotarsa texana, being much more active when expressed truncated in B. thuringiensis. These results suggest that the formation of bipyramidal crystals requires more than just the presence of the C-terminal region of Cryl protoxins. They also suggest that proteolysis plays an important role during the post-translational processing of Cry proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agaisse, H. & Lereclus, D. 1995 How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology 177, 6027–6032.

    Google Scholar 

  • Almond, B.D. & Dean, D.H. 1993 Structural stability of Bacillus thuringiensis δ-endotoxin homolog-scanning mutants determined by susceptibility to proteases. Applied and Environmental Microbiology 59, 2442–2448.

    Google Scholar 

  • Almond, B.D. & Dean, D.H. 1994 Intracellular proteolysis and limited diversity of the Bacillus thuringiensis CryIA family of the insecticidal crystal proteins. Biochemical and Biophysical Research Communications 201, 788–794.

    Google Scholar 

  • Andrews, R.E., Bibilos, M.M. & Bulla, L.A. 1985 Protease activation of the entomocidal protoxin of Bacillus thuringiensis kurstaki. Applied and Environmental Microbiology 50, 737–742.

    Google Scholar 

  • Aronson, A., Beckman, W. & Dunn, P. 1986 Bacillus thuringiensis and related insect pathogens. Microbiological Reviews 50, 1–24.

    Google Scholar 

  • Aronson, A.I. 1993 The two faces of Bacillus thuringiensis: Insecticidal proteins and post-exponential survival. Molecular Microbiology 7, 489–496.

    Google Scholar 

  • Bachmair, A. & Varshavsky, A. 1989 The degradation signal in a short-lived protein. Cell 56, 1019–1032.

    Google Scholar 

  • Baum, J.A. & Malvar, T. 1995 Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Molecular Microbiology 18, 1–12.

    Google Scholar 

  • Bietlot, H.P.L., Vishnubhatla, I., Carey, P.R., Pozsgay, M. & Kaplan, H. 1990 Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. Biochemistry Journal 267, 309–315.

    Google Scholar 

  • Ceron, J., Covarrubias, L., Quintero, R., Ortiz, M., Aranda, E., Lina, L. & Bravo, A. 1994 PCR analysis of the CryI insecticidal crystal family genes from Bacillus thuringiensis. Applied and Environmental Microbiology 60, 353–356.

    Google Scholar 

  • Crickmore, N. & Ellar, D.J. 1992 Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA δ-endotoxin gene in Bacillus thuringiensis. Molecular Microbiology 6, 1533–1537.

    Google Scholar 

  • Crickmore, N., Wheeler, V.C. & Ellar, D.J. 1994 Use of an operon fusion to induce expression and crystallization of a Bacillus thuringiensis δ-endotoxin encoded by a cryptic gene. Molecular and General Genetics 242, 365–368.

    Google Scholar 

  • De Leon, T. & Ibarra, J.E. 1995 Alternative bioassay technique to measure activity of Cry III proteins of Bacillus thuringiensis. Journal of Economic Entomology 88, 1596–1601.

    Google Scholar 

  • De Maagd, R.A., Kwa, M.S.G., Van der Klei, H., Yamamoto, T., Schipper, B., Vlak, J.M., Stiekema, W.J. & Bosch, D. 1996 Domain III substitution in Bacillus thuringiensis δ-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Applied and Environmental Microbiology 62, 1537–1543.

    Google Scholar 

  • Du, C., Martin, P.A.W. & Nickerson, K.W. 1994 Comparison of disulphide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Applied and Environmental Microbiology 60, 3847–3853.

    Google Scholar 

  • Du, C. & Nickerson, K.W. 1996 Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: Physiological and pathogenic consequences. Applied and Environmental Microbiology 62, 3722–3726.

    Google Scholar 

  • Feitelson, J.S., Payne, J. & Kim, L. 1992 Bacillus thuringiensis: Insects and beyond. Bio/Technology 10, 271–275.

    Google Scholar 

  • Ge, A.Z., Shivarova, N.I. & Dean, D. 1989 Location of the Bombyx mori specificity domain on a Bacillus thuringiensis δ-endotoxin protein. Proceedings of the National Academy of Sciences of the USA 86, 4037–4041.

    Google Scholar 

  • Gill, S.S., Cowels, E.A. & Pietrantonio, P.V. 1992 The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37, 615–636.

    Google Scholar 

  • Grochulski, P., Masson, L., Borisova, S., Pustzai-Carey, M., Schwartz, J.-L., Brousseau, R. & Cygler, M. 1995 Bacillus thuringiensis Cry IA(a) insecticidal toxin: Crystal and channel formation. Journal of Molecular Biology 254, 447–464.

    Google Scholar 

  • Hershko, A. 1998 Ubiquitin-mediated protein degradation. Journal of Biological Chemistry 263, 15237–15240.

    Google Scholar 

  • HoÈ fte, H. & Whiteley, H.R. 1989 Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53, 242–255.

    Google Scholar 

  • Kim, Y.S., Kanda, K., Kato, F. & Murata, A. 1998 Effect of the carboxyl-terminal portion of Cry1Ab in Bacillus thuringiensis on toxicity against the silkworm, Bombyx mori. Applied Entomology and Zoology 33, 473–477.

    Google Scholar 

  • Lambert, B., Höfte, H., Annys, K., Jansens, S., Soetaert, P. & Peferone, M. 1992 Novel Bacillus thuringiensis insecticidal crystal protein with a sailent activity against coleopteran larvae. Applied and Environmental Microbiology 58, 2536–2542.

    Google Scholar 

  • Lecadet, M.M., Chaufaux, J., Ribier, J. & Lereclus, D. 1992 Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Applied and Environmental Microbiology 58, 840–849.

    Google Scholar 

  • Lereclus, D., Arantes, O., Chaufaux, J. & Lecadet, M.M. 1989 Transformation and expression of a cloned d-endotoxin gene in Bacillus thuringiensis. FEMS Microbiology Letters 60, 211–218.

    Google Scholar 

  • Li, J., Carroll, J. & Ellar, J.D. 1991 Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353, 815–821.

    Google Scholar 

  • Lopez-Meza, J., Federici, B.A., Poehner, W.J., Martinez-Castillo, A. & Ibarra, J.E. 1995 Highly mosquitocidal isolates of Bacillus thuringiensis subspecies kenyae and entomocidus from Mexico. Biochemical Systematics and Ecology 23, 195–201.

    Google Scholar 

  • McPherson, A.S., Perlak, F.J., Fuchs, R.L., Marrone, P.G., Larvrik, P.B. & Fischho., D.A. 1988 Characterization of the coleopteranspecific protein gene of Bacillus thuringiensis var. tenebrionis. Bio/ Technology 6, 61–66.

    Google Scholar 

  • Nakamura, K., Oshie, K., Shimizu, M., Takada, Y., Oeda, K. & Ohkawa, H. 1990 Construction of chimeric insecticidal proteins between the 130 kDa and 135 kDa proteins of Bacillus thuringiensis subsp. aizawai for analysis of structure-function relationship. Agricultural and Biological Chemistry 54, 715–724.

    Google Scholar 

  • Oeda, K., Inouye, K., Ibuchi, Y., Oshie, K., Shimizu, M., Nakamura, K., Nishioka, R., Takada, Y. & Ahkawa, H. 1989 Formation of crystals of the insecticidal proteins of Bacillus thuringiensis subsp. aizawai IPL7 in Escherichia coli. Journal of Bacteriology 171, 3568–3571.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. & Maniatis, T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, pp. 18.60–18.74. New York: Cold Spring Harbor Laboratory. ISBN 0-87969309-6.

    Google Scholar 

  • Schägger, H. & Von Jagow, G. 1987 Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry 166, 368–379.

    Google Scholar 

  • Schnepf, E., Crickmore, N., Vanrie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R. & Dean, D.H. 1998 Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62, 775.

    Google Scholar 

  • Schwartz, J.-L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. & Masson, L. 1997a Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Letters 410, 397–402.

    Google Scholar 

  • Schwartz, J.L., Potvin, L., Chen, X.J., Brousseau, R. Laprade, R., & Dean, D.H. 1997b Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryIAa, a Bacillus thuringiensis toxin. Applied and Environmental Microbiology 63, 3978–3984.

    Google Scholar 

  • Thompson, M.A., Schnepf, H.E. & Feitelson, J.S. 1995 Structure, function and engineering of Bacillus thuringiensis toxins. Genetic Engineering 17, 99–117.

    Google Scholar 

  • Whiteley, H.R. & Schnepf, H.E. 1986 The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annual Review of Microbiology 40, 549–576.

    Google Scholar 

  • Wu, D. & Aronson, A. 1992 Localized mutagenesis defines regions of the Bacillus thuringiensis δ-Endotoxin involved in toxicity and specificity. Journal of Biological Chemistry 267, 2311–2317.

    Google Scholar 

  • Wu, D. & Federici, B.A. 1993 A 20-Kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. Journal of Bacteriology 175, 5726–5280.

    Google Scholar 

  • Yamamoto, T. & Powell, G.K. 1993 Bacillus thuringiensis crystal proteins: Recent advantages understanding its insecticidal activity. In Advanced engineered pesticides, ed. L. Kim, pp. 1–42. New York. Marcel Dekker. ISBN 0-82478990-3.

    Google Scholar 

  • Zhou, C., Yang, Y. & Long, A.Y. 1990 Miniprep in ten minutes. Biotechniques 8, 172–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, A.A., Ibarra, J.E. Expression and crystallization of a Cry3Aa–Cry1Ac chimerical proteinof Bacillus thuringiensis. World Journal of Microbiology and Biotechnology 15, 455–463 (1999). https://doi.org/10.1023/A:1008971800734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008971800734

Navigation