, Volume 9, Issue 1–2, pp 71–76

Impact of Tributyltin on Marine Invertebrates

  • Claude Alzieu


Organotins, and more specifically tributyltins (TBT), are introduced into the marine environment by paints designed to protect ship hulls against biological fouling. Lab tests have shown that bivalve reproduction is affected by TBT concentrations exceeding 20 ng⋅l−1. A dose-effect correlation scale describes the effects on embryogenesis and on larval growth: total larval mortality occurs after 12 days of exposure at a concentration of 200 ng⋅l−1, and inhibition of fertilization at 100 μg⋅l−1. At concentrations close to 1 ng⋅l−1, significant changes are observed in the sexuality of marine gastropods, reflected in an imposition of male characters in females, a phenomenon known as imposex. Imposex evolution in Nucella lapillus females includes: formation of a vas deferens, a channel between prostate and penis existing in males (phase 1), appearance and growth of a penis (phases 2 to 4), sterilization of the subject with blocking of the oviduct and accumulation of eggs within the gland (phases 5 to 6). In the final stages, females become sterile, thereby jeopardizing population renewal. These disturbances occur following exposure at TBT concentrations of 7 to 12 ng⋅l−1 approximately. Physiological and biochemical phenomena leading to imposex are still not well understood. However, there are evidences that TBT exposure tends to increase the testosterone contents in female mollusks, while progesterone and 17 E oestradiol levels remain constant. Since testosterone alone causes penis growth in the females, it is thought that imposex could be attributed to its accumulation originating from inhibition of cytochrome P450-dependent aromatase. The conversion of testosterone into 17 E oestradiol would then be inhibited by TBT. In spite of regulations banning the use of TBT as biocide in antifouling paints, current TBT contamination in coastal areas frequently reaches concentrations likely to cause imposex.

tributyltin biogeochemistry biological effects endocrine perturbations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alzieu, Cl. and Michel, P. (1998). L'étain et les organoétains en milieu marin: biogéochimie et ecotoxicologie. Repères Océan, Edit IFREMER, 15, 104 p.Google Scholar
  2. Chagot, D., Alzieu, Cl., Sanjuan, J. and Grizel, H. (1990). Sublethal and histopathological effects of trace levels of tributyltin fluoride on adult oysters Crassotrea gigas. Aquat. Living Ressour. 3, 121-30.Google Scholar
  3. de Mora, S.J. (1996). Tributyltin: case study of an environmental contaminant. Cambridge Environmental Chemistry Series 8, 311 pp.Google Scholar
  4. Fent, K. (1989). Organotin speciation in municipal wastewater and sewage sludge: ecotoxicological consequences. Mar. Environ. Res. 28, 477.Google Scholar
  5. Fent, K. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology 26, 1-117.Google Scholar
  6. Féral, C. and Legall, S. (1982). Induction expérimentale par un polluant marin, le tributylétain, de l'activité neuro endocrine controlant la morphogenèse du pénis chez les femelles d'Ocenebra erinacea, Mollusque, Prosobranche gonochorique. C.R. Acad. Sci Paris 295(III), 627-30.Google Scholar
  7. Gibbs, P.E., Bryan, G.W., Pascoe, P.L. and Burt, G.R. (1987). The use of the dogwhelk (Nucella lapillus) as an indicator of TBT contamination. J. Mar. Biol. Assoc. UK 67, 507-24.Google Scholar
  8. Gibbs, P.E. and Bryan, G.W. (1996). TBT induced imposex in neogastropod. In S.J. de Mora ed Tributyltin: case study of an environmental contaminant. Cambridge Environmental Chemistry Series 8, 212-36.Google Scholar
  9. Hassan, M.A. and Juma, H.A. (1992). Assessment of tributyltin in the marine environment of Bahrain. Mar. Pollut. Bull. 24, 408.Google Scholar
  10. His, E. and Robert, R. (1983-1985). Développement des véligères de Crassotrea gigas dans le bassin d'Arcachon. Etudes sur les mortalités larvaires. Rev. Trav. Inst. Pêches Marit. 47, 1-2, 63-88.Google Scholar
  11. IPCS. (1990). Environmental Health Criteria 116-Tributyltin Compounds, 273 p. Geneva: WHO.Google Scholar
  12. Iwata, H., Tanabe, S., Miyazaki, N. and Tatsukawa, R. (1994). Detection of butyltin compound residues in the blubber of marine mammals. Mar. Pollut. Bull. 28, 607.Google Scholar
  13. Lascourrèges-Berdeü, J.F. (1996). Rôle des Sulfatobactéries dans la Remobilisation et la Transformation des Metaux et des Composés Organostanniques Butylétain et Phénylétains Stockés dans les Sédiments Lagunaires, No. 1530, 232 p. Thèse, Université de Bordeaux I, France.Google Scholar
  14. Law, R.J., Waldock, M.J., Allchin, C.R., Laslett, R.E. and Bailey, K.J. (1994). Contaminants in sea water around England and Wales: results from monitoring surveys, (1990-1992) Mar. Pollut. Bull. 28, 668.Google Scholar
  15. Maguire, R.J. (1987). Environmental aspects of tributyltin. Appl. Organomet. Chem. 1, 475-98.Google Scholar
  16. Matthiessen, P. and Gibbs, P.E. (1998). Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environ. Toxicol. Chem. 17(1), 37-43.Google Scholar
  17. May-ming Lau, M. (1991). Tributyltin antifoulings: a threat to the Hong Kong marine environment. Arch. Environ. Contam. Toxicol. 20, 229.Google Scholar
  18. Michel, P. and Averty, B. (1999). Contamination of French coastal waters by organotin compounds: 1997 update. Mar. Pollut. Bull. 38(4), 268-75.Google Scholar
  19. Ronis, M.J.J. and Mason, A.Z. (1996). The metabolism of testosterone by the periwinkle (Littorina littorea)in vitro and in vivo: effects of tributyltin. Mar. Environ. Res. 42, 161-6.Google Scholar
  20. Smith, B.S. (1981). Tributyltin compounds induced male characteristics on female mud snails Nassarius obsoletuss = Tlyanassa obsoleta. J. Appl. Toxicol. 1(3), 141-4.Google Scholar
  21. Stewart, C. and de Mora, S.J. (1990). A review of the degradation of tri(n butyl)tin in marine environment. Environ. Technol. 11, 565-70.Google Scholar
  22. Stewart, C. and Thompson, J.A.J. (1994). Extensive butyltin contamination in southwestern coastal British Columbia, Canada. Mar. Pollut. Bull. 28, 601.Google Scholar
  23. Uhler, A.D., Durell, G.S., Steinhauer, W.G. and Spellacy, A.M. (1993). Tributyltin levels in bivalve mollusks from the east and west coast of the United States: results from the 1988-1990 national status and trends mussel watch project. Environ. Tech. Chem. 12, 139-53.Google Scholar
  24. Wade, T.L., Garcia-Romero, B. and Brooks, J.M. (1990). Butyltins in sediments and bivalves from US coastal areas. Chemosphere 20, 647.Google Scholar
  25. Waldock, M.J., Thain, J.E. and Miller, D. (1983). The accumulation and depuration of bis, tributyltin oxyde in oysters: a comparison between the Pacific oyster, Crassostrea gigas and the flat European oyster, Ostrea edulis. ICES C.M. 1983/E, 59.Google Scholar
  26. Watanabe, N., Sakai, S. and Takatsuki, H. (1992). Examination for degradation paths of butyltin compounds in natural waters. Wat. Sci. Tech. 25(11), 117-24.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Claude Alzieu
    • 1
  1. 1.Station de SèteIFREMERFrance

Personalised recommendations