Skip to main content
Log in

Analysis of Dual Diffusion and Non-linear Adsorption Isotherm with a Time Lag Method

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This paper presents an application of the time lag method in the analysis of an adsorption system, where dual diffusion mechanism is assumed to exist and the equilibrium relationship between the fluid and adsorbed phases is non-linear. The derived time lag is expressed in terms of system parameters and operating conditions in the form of a quadrature. The feature of this solution is that the relative contribution of the pore and surface diffusions is a strong function of upstream pressure when the time lag experiment is operated over the non-linear range of the adsorption isotherm. It is this nice feature that we take advantage of to determine the pore and surface diffusivities without resorting to isolation of the pore diffusion by using non-adsorbing gas as a reference, as usually done in many other work. This advantage is not manifested in linear systems where the relative contribution of the pore and surface diffusions is a constant, rendering the delineation of these two processes impossible. Effects of various parameters on the utility of this time lag method are discussed in this paper, and application of the method is demonstrated with experimental data of sulfur dioxide adsorption onto Carbolac carbon (Proc. Roy. Soc., A271, 1–18, 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ash, R., R.M. Barrer, and C.G. Pope, “Flow of Adsorbable Gasesand Vapours in a Microporous Medium. I. Single Adsorbates, ”Proc. Roy. Soc., A271, 1–18 (1963).

    Google Scholar 

  • Barrer, R.M., “A New Approach to Gas Flow in Capillary Systems, ”J. Phys. Chem., 57, 35–40 (1953).

    Google Scholar 

  • Carman, P.C. and F.A. Raal, “Diffusion and Flow of Gases andVapours Through Micropores. III. Surface Diffusion Coefficientsand Activation Energies, ” Proc. Roy. Soc. London, A209, 38–58(1951).

    Google Scholar 

  • Darken, L.S., “Diffusion, Mobility and Their Interrelation ThroughFree Energy in Binary Metallic Systems, ” Trans. AIME, 175, 184–201 (1948).

    Google Scholar 

  • Daynes, H.A., “The Process of Diffusion Through a Rubber Membrane, ”Proc. Roy. Soc., A97, 286–307 (1920).

    Google Scholar 

  • Do, D.D., “Hierarchy of Rate Models for Adsorption and Desorptionin Bidisperse Structured Sorbents, ” Chem. Eng. Sci., 45, 1373–1381 (1990).

    Google Scholar 

  • Do, D.D., Adsorption Analysis: Equilibria and Kinetics, ImperialCollege Press, London, 1998.

    Google Scholar 

  • Do, D.D. and R.G. Rice, “ASimple Method of Determining Pore andSurface Diffusivities in Adsorption Studies, ” Chem. Eng. Commun.,107, 151–161 (1991).

    Google Scholar 

  • Flood, E.A., R.H. Tomlinson, and A.E. Leger, “The Flow of FluidsThrough Activated Carbon Rods. Parts I, II and III, ” Can. J.Chemistry, 30, 348–371, 372–385, 389–410 (1952).

    Google Scholar 

  • Frisch, H.L., “The Time Lag in Diffusion, ” J. Phys. Chem., 61, 93–95 (1957).

    Google Scholar 

  • Gilliland, E.R., R.F. Baddour, G.P. Perkinson, and K.J. Sladek, “Diffusionon Surfaces. I. Effect of Concentration on the Diffusivityof Physically Adsorbed Species, ” Ind. Eng. Chem. Fundam., 13,95–99 (1974).

    Google Scholar 

  • Gilliland, E.R., R.F. Baddour, and J.L. Russell, “Rates of FlowThrough Microporous Solids, ” AIChE J., 4, 90–96 (1958).

    Google Scholar 

  • Haynes, J.M. and R.J.L. Miller, “Surface Diffusion andViscous FlowDuring Capillary Condensation, ” in Adsorption at the Gas-Solidand Liquid-Solid Interface, J. Rouquerol and K.S.W. Sing (Eds.),pp. 439–447, Elsevier, Amsterdam, 1982.

    Google Scholar 

  • Higashi, K., H. Ito, and J. Oishi, “Surface Diffusion Phenomena inGaseous Diffusion, ” J. Atomic Energy Society of Japan, 5, 24–31(1963).

    Google Scholar 

  • Hwang, S.T., “Surface Diffusion Parallel with Knudsen Flow, ” Sep.Sci., 11, 17–27 (1976).

    Google Scholar 

  • Hwang, S.T. and K. Kammermeyer, “Surface Diffusion in MicroporousMedia, ” Can J. Chem. Eng., 44, 82–89 (1966).

    Google Scholar 

  • Johnson, M.F.L. and W.E. Stewart, “Pore Structure and GaseousDiffusion in Solid Catalysts, ” J. Catal., 4, 248–252 (1965).

    Google Scholar 

  • Kapoor, A., R.T. Yang, and C. Wong, “Surface Diffusion, ” Catal.Rev. Sci. Eng., 31, 129–214 (1989).

    Google Scholar 

  • Kraus, G. and J.W. Ross, “Surface Area Analysis by Means of GasFlow Methods. II. Transient State Flow in Porous Media, ” J. Phys.Chem., 57, 334–336 (1953).

    Google Scholar 

  • Okazaki, M., H. Tamon, and R. Toei, “Interpretation of Surface FlowPhenomenon of Adsorbed Gases by Hopping Model, ” AIChE J.,27, 262–270 (1981).

    Google Scholar 

  • Perry, R.H., Chemical Engineers' Handbook, 5th ed., McGraw Hill, New York, 1973.

    Google Scholar 

  • Rajniak, P. and R.T. Yang, “Unified Network Model for Diffusionof Condensable Vapors in Porous Media, ” AIChE J., 42, 319–331(1996).

    Google Scholar 

  • Ross, J.W. and R.J. Good, “Adsorption and Surface Diffusion of n-Butane on Spheron 6. 2700±/ carbon black, ” J. Phys. Chem., 60, 1167–1171 (1956).

    Google Scholar 

  • Sladek, K., E.R. Gilliland, and R. Baddour, “Siffusion on Surfaces.II. Correlation of Diffusivities of Physically and Chemically AdsorbedSpecies, ” Ind. Eng. Chem. Fundam., 13, 100–105 (1974).

    Google Scholar 

  • Tamon, H., S. Kyotani, H. Wada, M. Okazaki, and R. Toei, “SurfaceFlow Phenomenon of Adsorbed Gases on Activated Alumina, ”J. Chem. Eng. Jap., 14, 136–141 (1981).

    Google Scholar 

  • Tamon, H., M. Okazaki, and R. Toei, “FlowMechanism of AdsorbateThrough Porous Media in Presence of Capillary Condensation, ”AIChE J., 27, 271–277 (1981).

    Google Scholar 

  • Tsujikawa, H., T. Osawa, and H. Inoue, “Separation of Benzene andNitrogen by Permeation Through Porous Vycor Glass, ” Int. Chem.Eng., 27, 479–487 (1987).

    Google Scholar 

  • van Amerongen, G.J., “Diffusion in Elastomers, ” Rubber Chemistryand Technology, 37, 1065–1152 (1964).

    Google Scholar 

  • Weaver, J.A. and A.B. Metzner, “The Surface Transport of AdsorbedMolecules, ” AIChE J., 12, 655–661 (1966).

    Google Scholar 

  • Yang, R.T., J.B. Fenn, and G.L. Haller, “Modification to the HigashiModel for Surface Diffusion, ” AIChE J., 19, 1052–1053 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, D., Do, H. Analysis of Dual Diffusion and Non-linear Adsorption Isotherm with a Time Lag Method. Adsorption 6, 111–123 (2000). https://doi.org/10.1023/A:1008959517075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008959517075

Navigation