Advertisement

World Journal of Microbiology and Biotechnology

, Volume 15, Issue 5, pp 523–534 | Cite as

Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: motives and perspectives

  • Youssouf Kalogo
  • Willy Verstraete
Article

Abstract

During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.

Anaerobic digestion anaerobic sludge bed (ASB)-reactor raw domestic wastewater tropical regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, L.K., Ohashi, Y., Mochida, E., Okui, H., Ueki, Y., Harada, H. & Okashi, A. 1997 Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process. Water Science and Technology 36, 433–440.Google Scholar
  2. Ahel, M., Giger, W. & Koch, M. 1994 Behavior of alkylphenol polyethoxylate surfactants in the aquatic environment-I. Occurrence and transformation in sewage treatment. Water Research 28, 1131–1142.Google Scholar
  3. Barbosa, A. & Sant' Anna, Jr. G.L. 1989 Treatment of raw domestic sewage in an UASB reactor. Water Research 23, 1483–1490.Google Scholar
  4. Bogte, J.J., Breure, A.M., Van Andel, J.G. & Lettinga, G. 1993 Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Science and Technology 27, 75–82.Google Scholar
  5. Brito, A.G. & Melo, L.F. 1997 A simplified analysis of reaction and mass transfer in UASB and EGSB reactors. Environmental Technology 18, 35–44.Google Scholar
  6. Burel, C. & Trancart, M.J.L. 1985 Mise au point d'un pilote de digestion anaérobie: conception et réalisation. Tribune du Cebedeau 494, 27–43.Google Scholar
  7. Castillo, A., Cecchi, F. & Mata-Alvarez, J. 1997 A combined anaerobic-aerobic system to treat domestic sewage in coastal areas. Water Science and Technology 31, 3057–3063.Google Scholar
  8. Catunda, P.F.C. & Van Haandel, A.C. 1996 Improved applicability of waste stabilisation pond by pre-treatment in a UASB reactor. Water Science and Technology 33, 147–156.Google Scholar
  9. Chen, X. 1996 USB septic tank combined with aerobic biofilter for domestic wastewater treatment. MSc Thesis, University of Gent.Google Scholar
  10. Chernicharo, C.A.L. & Borges, J.M. 1997 Evaluation and start up of a full scale UASB reactor treating domestic sewage. Case study. In Proceedings of the Eighth International Conference on Anaerobic Digestion, May 25-29, 1997, 2, pp. 192–199. Sendai: document of the IAWQ, Pergamon press. ISSN 0273-1223.Google Scholar
  11. Chernicharo, C.A.L. & Machado, R.M.G. 1998 Feasibility of the UASB/AF system for domestic sewage treatment in developing countries. Water Science and Technology 38, 325–332.Google Scholar
  12. Cisneros, J.B. 1995 Wastewater reuse to increase soil productivity. Water Science and Technology 32, 173–180.Google Scholar
  13. Cisneros, J.B. & Mejía, C.A. 1997 Treatment of Mexico City wastewater for irrigation purposes. Environmental Technology. 18, 721–730.Google Scholar
  14. De Baere, L. & Verstraete, W. 1982 Can the recent innovations in anaerobic digestion of wastewater be implemented in anaerobic sludge stabilization? In Recycling International-Recovery of Energy and Material from Residues and Wastes, ed. Tomé-Kozmiensky, K.J. pp. 390–394. Berlin: Freitag, E. - Verlag für Umwelttechniek. ISBN 3-9800462-0.Google Scholar
  15. De Man, A.W.A., Rijs, G.B.J., Lettinga, G. & Van Starkenburg, W. 1988a Anaerobic treatment of sewage using a granular sludge bed UASB reactor. In Proceedings of the Fifth International Symposium on Anaerobic Digestion, eds Tilche, A. & Rozzi, A. pp. 735–738. Bologna. ISBN 0-08-036634-1.Google Scholar
  16. De Man, A.W.A., Vander Last, A.R.M. & Lettinga, G. 1988b The use of EGSB and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8 to 30 °C. In Proceedings of the Fifth International Conference on Anaerobic Digestion, eds Hall, E.R. & Hobson, P.N. pp. 197–209. Bologna. ISBN 0-08-036634-1.Google Scholar
  17. De Sousa, J.T. & Foresti, E. 1996 Domestic sewage treatment in an upflow anaerobic sludge blanket-sequencing batch reactor system. Water Science and Technology 33, 73–84.Google Scholar
  18. De Velásquez, M.T.O., Manero, O.J., Cardoso, J. & Martinez, G. 1998 New polymeric coagulants tested in water and wastewater. Environmental Technology 19, 323–330.Google Scholar
  19. Dixo, N.G.H., Gambril, M.P., Catunda, P.F.C. & Van Haandel, A.C. 1995 Removal of pathogenic organisms from the e.uent of an upflow anaerobic digester using waste stabilization ponds. Water Science and Technology 31, 275–284.Google Scholar
  20. Draaijer, H., Maas, J.A.W., Schaapman, J.E. & Khan, A. 1992 Performance of the 5 MLD UASB reactor for sewage treatment at Kampur, India. Water Science and Technology 25, 123–133.Google Scholar
  21. El-Mamouni, R., Leduc, R. & Guiot, S.R. 1998 Influence of synthetic and natural polymers on the anaerobic granulation process. Water Science and Technology 38, 341–347.Google Scholar
  22. Elmitwalli, T.A., Zandvoort, M.H., Zeeman, G., Bruning, H. & Lettinga, G. 1999 Low temperature treatment of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactors. Water Science and Technology 39, 177–186.Google Scholar
  23. Folkard, G. & Sutherland, J. 1994 Moringa oleifera, a multipurpose tree. Footsteps 20 (September), 14–15.Google Scholar
  24. Gnanadipathy, A. & Polprasert, C. 1993 Treatment of domestic wastewater with UASB reactor. Water Science and Technology 27, 195–203.Google Scholar
  25. Goncalves, R.F., De AraÚjo, V.L. & Chernicharo, C.A.L. 1998 Association of UASB reactors and submerged aerated biofilters for domestic sewage treatment. Water Science and Technology 38, 189–196.Google Scholar
  26. Grin, P.C., Roersma, R.E. & Lettinga, G. 1983 Anaerobic treatment of raw sewage at lower temperatures. In Proceedings of the European Symposium on Anaerobic Wastewater Treatment (AWWT), ed. Van Den Brink, W.J. pp. 335–347. Noordwijkerhout. ISSN 0194-3925.Google Scholar
  27. Grootaerd, H., Liessens, B. & Verstraete, W. 1997 Effect of directly soluble and fibrous rapidly acidifying chemical oxygen demand and reactor liquid surface tension on granulation and sludge bed stability in upflow anaerobic sludge blanket reactors. Applied Microbiology and Biotechnology 48, 304–310.Google Scholar
  28. Harada, H., Uemura, S. & Momonoi, K. 1994 Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing differents levels of sulfate. Water Research 28, 355–367.Google Scholar
  29. Hulshoff Pol, L.W., Euler, H., Eitner, A. & Grohganz, D. 1997 GTZ sectorial project promotion of anaerobic technology for the treatment of municipal and industrial sewage and wastes. In Proceedings of the Eighth International Conference on Anaerobic Digestion, May 25-29, 1997, 2, pp. 285–292. Sendai: Document of the IAWQ, Pergamon press.Google Scholar
  30. Hwu, C-S. 1997 Enhancing anaerobic treatment of wastewaters containing oleic acid. PhD Thesis. Wageningen University (The Netherlands).Google Scholar
  31. Imai, T., Ukita, M., Lui, J., Sekine, M., Nakanishi, H. & Fukagawa, M. 1997 Advanced startup of UASB reactors by adding of water absorbing polymer. Water Science and Technology 36, 399–406.Google Scholar
  32. Kalker, T.J.J., Maas, J.A.W. & Zwaag, R.R. 1999 Transfer and acceptance of UASB technology for domestic wastewater: two case studies. Water Science and Technology 39, 219–226.Google Scholar
  33. Kalogo, Y. 1996 Approvisionnement en eau potable en milieu rural ivoirien: approche des problèmes. Examen des methods de traitements des eaux potable-analyse de leur adéquation aux problèmes recontrés. Memoire DEA en Sciences de l'Environnement. Fondation Universitaire Luxembourgeoise. Arlon (Belgique).Google Scholar
  34. Kato, T.M., Field, J.A., Versteeg, P. & Lettinga, G. 1994 Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low strength soluble wastewaters. Biotechnology and Bioengineering 44, 469–479.Google Scholar
  35. Kato, T.M., Field, J.A. & Lettinga, G. 1997 The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Science and Technology 36, 375–382.Google Scholar
  36. Kong, Z., Liessens, B. & Verstraete, W. 1995 Effects of RACOD and reactor liquid surface tension on granulation and sludge bed stability in UASB reactors. In Proceedings of the Ninth Forum for Applied Biotechnology. University of Gent (Belgium). 60/4b. pp. 2187–2194. ISSN 0368-9697.Google Scholar
  37. Kooymans, J.L. & Van Velsen, A.F.M. 1986 Application of the UASB process for treatment of domestic sewage under sub-tropical conditions, the cali case. In Anaerobic Treatment a Grow up Technology (AQUATEC 86), September 15-19, 1986, Schiedam, The Netherlands. pp. 423–436.Google Scholar
  38. Lettinga, G. 1996 Sustainable integrated biological wastewater treatment. Water Science and Technology 33, 85–98.Google Scholar
  39. Lettinga, G., De Man, A., Vander Last, A.R.M., Wiegant, W., Van Knippenber, K., Frijns, J. & Van Buuren, J.C.L. 1993 Anaerobic treatment of domestic sewage and wastewater. Water Science and Technology 27, 67–73.Google Scholar
  40. Lettinga, G. & Hulshoff Pol, L.W. 1991 UASB-process design for various types of wastewater.Water Science and Technology 24, 87–107.Google Scholar
  41. Lettinga, G., Roersma, R., Grin, P., De Zeeuw, W., Hulshof Pol, L., Van Velsen, Hobman, S. & Zeeeman, G. 1981 Anaerobic treatment of sewage and low strength wastewaters. In Proceedings of the second International Symposium on Anaerobic Digestion, eds Hughes, D. E., Stafford, D.A., Wheatley, B.I., Baader, W., Lettinga, G., Nyns, E.J., Verstrate, W. & Wentworth, R.L. pp. 271–291. Travemünde. ISBN 0-444-80406-4.Google Scholar
  42. Lettinga, G., Roersma, R. & Grin, P. 1983 Anaerobic treatment of raw domestic sewage at ambient temperature using a granular bed UASB reactor. Biotechnology and Bioengineering 25, 1701–1723.Google Scholar
  43. Lettinga, G., Van Velsen, A.F.M., Hobma, S.W., De Zeeuw, W. & Klapwijk, A. 1980 Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering 22, 699–734.Google Scholar
  44. Mergaert, K., Vanderhaegen, B. & Verstraete, W. 1992 A review. Application and trends of anaerobic pre-treatment of municipal wastewater. Water Research 26, 1025–1033.Google Scholar
  45. Monroy, O., Meraz, M., Montoya, T., Famá, G. & Macarie, H. 1997 Anaerobic digestion in Mexico. State of the technology, limitations, and potential for its development. In Proceedings of the Eighth International Conference on Anaerobic digestion, May 25- 29, 1997, 2, pp. 272–284. Sendai: document of the IAWQ, Pergamon press.Google Scholar
  46. Monroy, O., Noyola, A., Ramirez, F. & Guiot, J.P. 1988 Anaerobic digestion of water hyacinth as a highly efficient treatment process for developing countries. In Proceedings of the Fifth International Conference on Anaerobic Digestion, eds Hall, E.R. & Hobson, P.N. pp. 347–351. Bologna. ISBN 0-08-036634-1.Google Scholar
  47. NDabigengesere, A., Narasiah, K.S. & Talbot, B.G. 1995 Active agents and mechanisms of coagulation of turbid waters using Moringa oleifera. Water Research 29, 703–710.Google Scholar
  48. NDabigengesere, A. & Narasiah, K.S. (1998). Use of Moringa oleifera seeds as a primary coagulant in wastewater treatment. Environmental Technology 19, 789–800.Google Scholar
  49. Pette, K.C. & Versprille, A.I. 1981 Application of the UASB - concept for wastewater treatment. In Proceedings of the Second International Symposium on Anaerobic Digestion, eds Hughes, D.E., Stafford, D.A., Wheatley, B.I., Baader, W., Lettinga, G., Nyns, E.J., Verstrate, W. & Wentworth, R.L. pp. 121–133. Travemünde. ISBN 0-444-80406-4.Google Scholar
  50. Pipyn, P., Derycke, D. & Defour, D. 1994 Sludge production and treatment as important factors in the cost/benefit calculation in the choice of the most appropriate wastewater treatment system. In Proceedings of the Eighth Forum for Applied Biotechnology. University of Gent (Belgium). 59/4a. pp. 1951–1958. ISSN 0368-9697.Google Scholar
  51. Rebac, S. 1998 Psychrophilic anaerobic treatment of low strength soluble wastewaters. PhD Thesis. Wageningen University (Netherlands).Google Scholar
  52. Sayed, S.K.I.A. & Fergala, M.A.A. 1995 Two stage of UASB concept for treatment of domestic sewage including sludge stabilization process. Water Science and Technology 32, 55–63.Google Scholar
  53. Schellinkhout, A. 1993 UASB technology for sewage treatment: Experience with a full-scale plant and its applicability in Egypt. Water Science and Technology 27, 173–180.Google Scholar
  54. Schellinkhout, A. & Collazos, C.J. (1992). Full-scale application of the UASB technology for sewage treatment. Water Science and Technology 25, 159–166.Google Scholar
  55. Schellinkhout, A., Jakm, F.F.G.M. & Forero, G.E. 1988 Sewage treatment: the anaerobic way is advancing in Colombia. In Proceedings of the Fifth International Conference on Anaerobic Digestion, eds Hall, E.R. & Hobson, P.N. pp. 767–770. Bologna. ISBN 0-08-036634-1.Google Scholar
  56. Schellinkhout, A. & Osorio, E. 1994 Long term experience with the UASB technology for sewage treatment on large scale. In Proceedings of the International Symposium on Anaerobic Digestion, January 23-27, 1994. RSA Litho(Pty)Ltd. pp. 251–252. Cape Town. ISSN 0571-2883.Google Scholar
  57. Schmidt, J.E. & Ahring, B.K. 1996 Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering 49, 229–246.Google Scholar
  58. Shereif, M.M., El-S Easa, M., El-Samra, M.I. & Nancy, K.H. 1995 A demonstration of wastewater treatment for reuse applications in fish production and irrigation in Suez, Egypt. Water Science and Technology 32, 137–144.Google Scholar
  59. Takaski, A. 1998 Wastewater reclamation and reuse. 10, pp. 1528. ISBN 1-56676-620-6.Google Scholar
  60. Tare, V., Mansoor, A.M. & Jawed, M. 1997 Biomethanation in domestic and industrial waste treatment-an Indian scenario. In Proceedings of the Eighth international Conference on Anaerobic Digestion, May 25-29, 1997, 2, pp. 255–262. Sendai: document of the IAWQ, Pergamon press.Google Scholar
  61. Tchobanogous, G. & Burton, F.L. 1991 Wastewater engineering. Treatment, Disposal, Reuse. McGraw-Hill International Editions. Third edition. ISBN 0-07-100824-1.Google Scholar
  62. Thaveesri, J. 1995 Granulation and stability in upflow anaerobic sludge bed reactor in relation to substrates and liquid surface tension. PhD Thesis. University of Gent (Belgium).Google Scholar
  63. Thaveesri, J., Daffonchio. D., Liessens, B., Vandermeren, P. & Verstraete, W. 1995 Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Applied and Environmental Microbiology 61, 3681–3686.Google Scholar
  64. Vander Last, A.R.M. & Lettinga, G. 1992 Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Science and Technology 25, 167–178.Google Scholar
  65. Van Haandel, A.C. & Catunda, P.F.C. 1997 Application and perspectives of the anaerobic wastewater treatment in Latin America. In Proceedings of the Fifth FAO/SREN Workshop on Anaerobic Conversions for Environmental Protection, Sanitation and Re-use of Residues, ed. Verstraete, W. University of Gent (Belgium). pp. 1–26. ISSN 1024-2368.Google Scholar
  66. Van Haandel, A.C. & Lettinga, G. 1994 Anaerobic Sewage Treatment. A Practical Guide for Regions with a Hot Climate. Wiley. ISBN 0-471-95121-8.Google Scholar
  67. Van Der Steen, P., Brenner, A., Van Buuren, J. & Oron, G. 1999 Post-treatment of UASB reactor e.uent in an integrated duckweed and stabilization pond system. Water Research 33, 615–620.Google Scholar
  68. Verstraete, W., De Baere, L. & Rozzi, A. 1981 Phase separation in anaerobic digestion: motives and methods Tribune du Cebedeau, 453–454, 367-375.Google Scholar
  69. Verstraete, W. & Vandevivere, P. 1999 A review. New and broader applications of anaerobic digestion. Critical Reviews in Environmental Science and Technology 28, 151–173.Google Scholar
  70. Vieira, S.M.M. & García, Jr. D. 1992 Sewage treatment by UASB-reactor. Operation results and recommendations for design and utilization. Water Science and Technology 25, 143–157.Google Scholar
  71. Vieira, S.M.M. 1988 Anaerobic treatment of domestic sewage in Brazil. Research results and full-scale experience. In Proceedings of the Fifth International Conference on Anaerobic Digestion, eds E.R. Hall & P.N. Hobson, pp. 185–196. Bologna. ISBN 0-08-036634-1.Google Scholar
  72. Vieira, S.M.M., Carvalho, J.L., Barijan, F.P.O. & Rech, C.M. 1994 Application of the UASB technology for sewage treatment in small community at Sumare, São Paulo State. Water Science and Technology 30, 203–210.Google Scholar
  73. Vieira, S.M.M. & Souza, M.E. 1986 Development of technology for the use of the UASB reactor in domestic sewage treatment. Water Science and Technology 18, 109–121.Google Scholar
  74. Visser, A., Gao, Y. & Lettinga, G. 1992 Anaerobic treatment of synthetic sulfate-containing wastewater under thermophilic conditions. Water Science and Technology 25, 193–202.Google Scholar
  75. Wang, K. 1994 Integrated Anaerobic and Aerobic Treatment of Sewage. PhD Thesis. Wageningen Agricultural University (The Netherlands).Google Scholar
  76. Wang, K., Vander Last, A.R.M. & Lettinga, G. 1997 The hydrolysis upflow sludge bed (HUSB) and the expanded granular sludge blanket (EGSB) reactors process for sewage treatment. In Proceedings of the Eighth International Conference on Anaerobic Digestion, May 25-29, 1997, 3, pp. 301–304. Sendai: document of the IAWQ, Pergamon press.Google Scholar
  77. Widdel, F. 1988 Microbiology and ecology of sulfate and sulfur-reducing bacteria. In Biology of Anaerobic Microorganisms, ed. Zehnder, A.J.B. pp. 469–586. NY: Wiley. ISBN 0-471-88226-7.Google Scholar
  78. Wirtz, R.A. & Dague, R.R. 1996 Enhancement of granulation and start up in the anaerobic sequencing batch reactor. Water Environment Research 85, 883–892.Google Scholar
  79. Wu, W-M., Jain, M.K. & Zeikus, G. 1996 Formation of fatty acid-degrading anaerobic granules by defined species. Applied and Environmental Microbiology 62, 2037–2044.Google Scholar
  80. Yoda, M., Kitagawa, M. & Miyaji, Y. 1987 Long term competition between sulfate reducing bacteria and methane producing bacteria in anaerobic biofilm. Water Research 21, 1547–1556.Google Scholar
  81. Zeeman, G. & Lettinga, G. 1999 The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level. Water Science and Technology 39, 187–194. 534 Y. Kalogo and W. VerstraeteGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Youssouf Kalogo
    • 1
  • Willy Verstraete
    • 1
  1. 1.Centre for Environmental SanitationState University of GentGentBelgium

Personalised recommendations