Skip to main content
Log in

In-situ electromigration studies using resistometry

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of electromigration on unpassivated aluminum thin films has been studied using the resistometry method. Interim information during current-stressing can be obtained by this method. Ultimate open-circuit failure has also been monitored by the presence of a very large increase in resistance. The relations between the mean-time-to failure (MTTF) with the current density and with the ambient temperature have been determined. From the resistometry measurements, it was found that there are three stages of temporal evolution for sputtered films. An abrupt resistance change of about 0.02–0.04% was observed in the films under low or moderate current density. Subsequently, a randomly fluctuating period followed, where the fluctuating amplitude was about 0.01%. Finally, a fatal stage with an abrupt and tremendous resistance increase was reached until an open-circuit failure occurred. For sputtered films under high stressing-current density (J ≥ 2.35 MA cm-2), and for all evaporated films, the initial stage of abrupt resistance change essentially disappeared. From the scanning electron microscopy (SEM) micrograph, film thinning, surface coarsening, voids in irregular shape, and continuous cracks were found near the cathode. “Fan-shape” erosion appeared in the cathode under high current density. In the anode, hillocks parallel to the conductor direction were observed. Perpendicular extrusions extending out of the conductor were also present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shatzkesand J. R. Lloyd, J. Appl. Phys. 59 (1986) 3890.

    Google Scholar 

  2. J. Li, R. S. Blewerand J. W. Mayer, MRS Bull. 18 (1993) 18.

    Google Scholar 

  3. L. Ceppert, IEEE Spectr. 35 (1998) 23.

    Google Scholar 

  4. I. A. Blechand H. Sello, in “Physics of Failure in Electronics”, 5 edited by T. S. Shilliday and I. Vaccaro (Rome Air Force Center, 1966) p. 496.

  5. J. R. Black, IEEE Trans. Electron Devices. ED-16 (1969) 338.

    Google Scholar 

  6. I. R. Lloyd, J. Appl. Phys. 69 (1991) 7601.

    Google Scholar 

  7. H. A. Schafft, T. C. Grant, A. N. Sexenaand C. Y. Kao, Proceedings of the International Reliability Physics Symposium (IEEE, NY, 1985) p. 93.

    Google Scholar 

  8. R. A. Sigsbee, J. Appl. Phys 44 (1973) 2533.

    Google Scholar 

  9. J. J. Clementand J. R. Lloyd, ibid. 71 (1992) 1729.

    Google Scholar 

  10. R. Kirchheimand U. Kaeber, ibid. 70 (1991) 172.

    Google Scholar 

  11. R. E. Hummeland W. A. Slippy Jr, Phys. Status Solidi A 2 (1970) K1.

    Google Scholar 

  12. J. Niehof, H. C. De Graafand J. F. Verwey, Mater. Res. Soc. Symp. Proc. 309 (1993) p. 295.

    Google Scholar 

  13. R. W. Pascoand J. A. Schwarz, Solid State Electron. 26 (1983) 445.

    Google Scholar 

  14. W. Baerg, K. Wu, P. Davis, G. Dao and D. Fraser, Proceedings of the International Reliability Physics Symposium (IEEE, NY, 1990) p. 119.

    Google Scholar 

  15. C.-F. Hong, M. Togoand K. Hok, Jpn. J. Appl. Phys. 32 (1993) L 247.

    Google Scholar 

  16. S. Kondo, O. Deguchiand K. Hinode, Appl. Phys. Lett. 67 (1995) 1606.

    Google Scholar 

  17. S. Kondo, K. Ogasawaraand K. Hinode, ibid. 79 (1996) 736.

    Google Scholar 

  18. S. Shingubara, H. Kanekoand M. Saitoh, J. Appl. Phys. 69 (1991) 207.

    Google Scholar 

  19. G. B. Alers, N. L. Beverly and A. S. Oates, ibid. 79 (1996) 7596.

    Google Scholar 

  20. D. J. Lacombeand E. Parks, Proceedings of the International Reliability Physics Symposium (IEEE, NY, 1985) p. 74.

    Google Scholar 

  21. P. F. Tang, A. G. Milnes, C. L. Bauerand S. Mahajan, Mater. Res. Soc. Symp. Proc. 167 (1989) 341.

    Google Scholar 

  22. V. C. Loand X. T. Dam, Model. Simul. Mater. Sci. Eng. 5 (1997) 563.

    Google Scholar 

  23. A. Scorzoni, I. De Munari, H. Stulens and V. D'Haeger, Mater. Res. Soc. Symp. Proc. 391 (1995) 513.

    Google Scholar 

  24. B. Baerg, R. Crandalland K. Wu, Proceedings of the International Reliability Physics Symposium (IEEE, NY, 1994), p. 192.

    Google Scholar 

  25. D. G. Pierce, E. S. Snyder, S. E. Swanson and L. W. Irwin, ibid. p. 198.

  26. V. D'Haeger, W. De Ceuninck, L. De Schepperand L. M. Stals, Mater. Res. Soc. Symp. Proc. 428 (1996) 133.

    Google Scholar 

  27. P. R. Besser, M. C. Maddenand P. A. Flinn, J. Appl. Phys. 72 (1992) 3792.

    Google Scholar 

  28. E. Arzt, O. Kraft, W. D. Nix and J. E. Sanchez Jr., ibid 76 (1994) 1563.

    Google Scholar 

  29. R. A. Sigsbee, Proceedings of the International Reliability Physics Symposcium (IEEE, NY, 1973) p. 301.

    Google Scholar 

  30. E. M. Atakov, J. J. Clement and B. Miner, ibid p. 213.

  31. M. J. Attardo and R. Rosenberg, J. Appl. Phys. 41 (1971) 2381.

    Google Scholar 

  32. J. R. Black, Proc. IEEE 57 (1968) 1587.

    Google Scholar 

  33. M. C. Shineand F. M. D'Heurle, IBM J. Res. Rev. 15 (1971) 378.

    Google Scholar 

  34. A. Ganguleeand F. M. D'Heurle, Thin Solid Films 16 (1973) 227.

    Google Scholar 

  35. J. G. Cottleand T. M. Chen, J. Electron. Mater. 17 (1988) 467.

    Google Scholar 

  36. M. J. Howesand D. V. Morgan, “Reliability and degradation: Semiconductors, Devices & Circuits” (John Wiley & Sons, Bath, 1981) p. 9.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, V.C., Dam, X.T. In-situ electromigration studies using resistometry. Journal of Materials Science: Materials in Electronics 10, 683–692 (1999). https://doi.org/10.1023/A:1008946821001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008946821001

Keywords

Navigation