Skip to main content
Log in

Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A chemically durable glass microsphere containing a large amount of phosphorus is useful for in situ irradiation of cancers, since they can be activated to be a β-emitter with a half-life of 14.3 d by neutron bombardment. When the activated microspheres are injected to the tumors, they can irradiate the tumors directly with β-rays without irradiating neighboring normal tissues. In the present study, P+ ion was implanted into silica glass microspheres of 25 μm in average diameter at 50 keV with nominal doses of 2.5×1016 and 3.35×1016 cm−2. The glass microspheres were put into a stainless container and the container was continuously shaken during the ion implantation so that P+ ion was implanted into them uniformly. The implanted phosphorus was localized in deep regions of the glass microsphere with the maximum concentration at about 50 nm depth without distributing up to the surface even for a nominal dose of 3.35×1016 cm−2. Both samples released phosphorus and silicon into water at 95 °C for 7 d. On the basis of the previous study on P+-implanted silica glass plates, the silica glass microspheres containing more phosphorus which is desired for actual treatment could be obtained, without losing high chemical durability, if P+ ion would be implanted at higher energy than 50 keV to be localized in deeper region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Ehrhardt and D. E. Day, Nucl. Med. Biol. 14 (1987) 233.

    Google Scholar 

  2. M. J. Hyatt and D. E. Day, J. Amer. Ceram. Soc. 70 (1987) C283.

    Google Scholar 

  3. E. M. Erbe and D. E. Day, J. Biomed. Mater. Res. 27 (1993) 1301.

    Google Scholar 

  4. R. V. P. Mantravadi, D. G. Spignos, W. S. Tan and E. L. Felix, Radiology 142 (1982) 783.

    Google Scholar 

  5. M. J. Herba, F. F. Illescas, M. P. Thirlwell, L. Rosenthall, M. Atri and P. M. Bret, Radiology. 169 (1988) 311.

    Google Scholar 

  6. I. Wollner, C. Knutsen, P. Smith, D. Prieskorn, C. Chrisp, J. Andrews, J. Juni, S. Warber, J. Klevering, J. Crudup and W. Ensminger, Cancer 61 (1988) 1336.

    Google Scholar 

  7. S. Houle, T. K. Yip, F. A. Shepherd, L. E. Rotstein, K. W. Sniderman, E. Theis, R. H. Cawthorn and K. Richmond-cox, Radiology 172 (1989) 857.

    Google Scholar 

  8. J. H. Anderson, J. A. Goldberg, R. G. Bessent, D. J. Kerr, J. H. Mckillop, I. Stewart, T. G. Cooke and C. S. Mcardle, Radiol. Oncl. 25 (1992) 137.

    Google Scholar 

  9. M. A. Burton, B. N. Gray, C. Jones and A. Coletti, Nucl. Med. Biol. 16 (1992) 495.

    Google Scholar 

  10. F. A. Shepherd, L. E. Lotstein, S. Houle, T. K. Yip, K. Paul and K. W. Sniderman, Cancer 70 (1992) 2250.

    Google Scholar 

  11. D. E. Day and T. E. Day, in “An Introduction to Bioceramics”, edited by L. L. Hench and J. Wilson (World-Science Publishing, Singapore, 1993) p. 305.

    Google Scholar 

  12. J. C. Andrews, S. C. Walker, R. J. Ackermann, L. A. Cotton, W. D. Ensminger and B. Sharpiro, J. Nucl. Med. 35 (1994) 1637.

    Google Scholar 

  13. R. C. Weast, D. R. Lide, M. J. Astle and W. H. Beyer, in “CRC Handbook of Chemistry and Physics”, (CRC Press, FL 1989) B-231 and 262.

    Google Scholar 

  14. M. Kawashita, T. Yao, F. Miyaji, T. Kokubo, G. H. Takaoka and I. Yamada, Rad. Phys. Chem. 46 (1995) 269.

    Google Scholar 

  15. M. Kawashita, F. Miyaji, T. Kokubo, G. H. Takaoka and I. Yamada, J. Ceram. Soc. Jpn 104 (1996) 710.

    Google Scholar 

  16. M. Kawashita, F. Miyaji, T. Kokubo, G. H. Takaoka, I. Yamada, Y. Suzuki and K. Kajiyama, J. Biomed. Mater. Res.: Appl. Biomater. 38 (1997) 342.

    Google Scholar 

  17. M. Kawashita, F. Miyaji, T. Kokubo, G. H. Takaoka and I. Yamada, in Proceedings of the Second International Meeting of the Pacific Rim Ceramic Societies, Cairns, July 1996, edited by The Australasian Ceramic Society, in press.

  18. M. Kawashita, F. Miyaji, T. Kokubo, G. H. Takaoka, I. Yamada, Y. Suzuki and K. Kajiyama, J. Amer. Ceram. Soc. in press.

  19. I. Simon, in “Modern Aspect of the Vitreous State 1”, edited by J. D. Mackenzie (Butterworth-Heinemann, London, 1960) p. 120.

    Google Scholar 

  20. J. R. Ferraro and M. H. Manghnani, J. Appl. Phys. 43 (1972) 4595.

    Google Scholar 

  21. H. Hosono, J. Appl. Phys.. 69 (1991) 8079.

    Google Scholar 

  22. R. G. Wilson and G. R. Brewer, in “Ion Beams with Applications to Ion Implantation”, (Wiley-Interscience, New York, 1973) p. 353.

    Google Scholar 

  23. H. Hosono, Y. Suzuki, Y. Abe, K. Oyoshi and S. Tanaka, J. Non-Cryst. Solids 142 (1992) 287.

    Google Scholar 

  24. K. Fukumi, A. Chayahara, M. Satou, J. Hayakawa, M. Hangyo and S. Nakashima, Jpn. J. Appl. Phys. 29 (1990) 905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashita, M., Miyaji, F., Kokubo, T. et al. Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation. Journal of Materials Science: Materials in Medicine 10, 459–463 (1999). https://doi.org/10.1023/A:1008940823818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008940823818

Keywords

Navigation