Skip to main content
Log in

Development and Validation of a Species- and Gene-Specific Molecular Biomarker: Vitellogenin mRNA in Largemouth Bass (Micropterus salmoides)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The main focus of environmental endocrine disruption is understanding how hormone mimics may be affecting reproduction and development. The principle mode of action for hormones is to regulate gene expression. The vitellogenin mRNA assay described in this paper was developed to study the specific mechanisms of action by proposed xenoestrogens. The establishment of this method is widely applicable to different species and to different genes. This gene specificity is what makes it such a good method to characterize a particular mechanism of action. Vitellogenin was chosen due to its current value as a plasma protein biomarker for estrogen exposure. The vitellogenin mRNA assay serves as a valuable complement to plasma vitellogenin, as it increases the sensitivity of detection as well as its potential to detect an earlier estrogenic response. Once validated, it can be used in biomonitoring as an effective method to detect a specific mechanism of action in samples exposed to xenoestrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhi, K. eds (1987). Current Protocols in Molecular Biology. New York, New York: GreenePub. Assoc. and Wiley-Interscience.

    Google Scholar 

  • Ali, S., Metzger, D., Bornert. J.M. and Chambon, P. (1993). Modulation of transcriptional activation by ligan-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J. 12, 1153–60.

    Google Scholar 

  • Beato, M. (1989). Gene regulation by steroid hormones. Cell 56, 335–44.

    Google Scholar 

  • Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J., Ouellette, B.F., Rapp, B.A. and Wheeler, D.L. (1999). Gen-Bank. Nuc. Acid. Res. 27, 12–7.

    Google Scholar 

  • Chapin, R.E., Stevens, J.T., Hughes, C.L., Kelce, W.R., Hess, R.A. and Daston, G.P. (1996). Endocrine modulation of reproduction. Fund. Appl. Toxicol. 29, 1–17.

    Google Scholar 

  • Denslow, N.D., Bowman, C.J., Robinson, G., Lee, H.S., Ferguson, R.J., Hemmer, M.J. and Folmar, L.C. (1999) Biomarkers of endocrine disruption at the mRNA level. In D. Henschel (ed) Environmental Toxicology and Risk Assessment: 8th Volume, ASTM STP 1364. American Society for Testing and Materials, pp. 24–35, Philadelphia.

    Google Scholar 

  • Denslow, N.D., Chow, M.M., Folmar, L.C., Bonomelli, L., Heppell, S.A. and Sullivan, C.V. (1997). Development of antibodies to teleost vitellogenins: potential biomarkers for environmental estrogens. In D.A. Henschel (ed) Environmental Toxicology and Risk Assessment: Biomarkers and Risk Assessment: 5th Volume, ASTM STP 1306. Philadelphia: American Society for Testing and Materials, pp. 23–36, Philadelphia.

    Google Scholar 

  • Flouriot, G., Pakdel, F., Ducouret, B. and Valotaire, Y. (1995). Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression. J. Mol. Endocrinol. 15, 143–51.

    Google Scholar 

  • Folmar, L.C., Denslow, N.D., Rao, V., Chow, M., Crain, D.A., Enblom, J., Marcino, J. and Guillette, Jr., L.J. (1996). Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ. Health. Perspect. 104, 1096–101.

    Google Scholar 

  • Glass, C.K. (1994). Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocrin. Rev. 15, 391–407.

    Google Scholar 

  • Heppell, S.A., Denslow, N.D., Folmar, L.C. and Sullivan C.V. (1995). ‘Universal’ assay of vitellogenin as a biomarker for environmental estrogens. Environ. Health. Perspect. 103(S7), 9–15.

    Google Scholar 

  • Herrin, D.L. and Schmidt, G.W. (1988). Rapid, reversible staining of northern blots prior to hybridization. Biotechniques 6, 196–200.

    Google Scholar 

  • Ignar-Trowbridge, D.M., Nelson, K.G., Bidwell, M.C., Curtis, S.W., Washburn, T.F., McLachlan, J.A. and Korach, K.S. (1992). Coupling of dual signaling pathways: epidermal growth factor action involved with the estrogen receptor. Proc. Natl. Acad. Sci. USA 89, 4658–62.

    Google Scholar 

  • Joseph, D.R. (1994). Structure, function, and regulation of androgen binding protein /sex hormone-binding globulin. Vitam. Horm. 49, 197–280.

    Google Scholar 

  • Kato, S., Endoh, H., Masuhiro, Y., Kitamoto, T., Uchiyama, S., Sasaki, H., Masushige, S., Gotoh, Y., Nishida, E., Kawashima, H., Metzger, D. and Chambon, P. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–4.

    Google Scholar 

  • Katzenellenbogen, B.S. (1996). Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54, 287–93.

    Google Scholar 

  • Kavlock, R.J., Daston, G.P., DeRosa, C., Fenner-Crisp, P., Gray, L.E., Kaattari, S., Lucier, G., Luster, M., Mac, M.J., Maczka, C., Miller, R., Moore, J., Rolland, R., Scott, G., Sheehan, D.M., Sinks, T. and Tilson, H.A. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ. Health. Perspect. 104(S4), 715–40.

    Google Scholar 

  • Kuiper, G.G.J.M., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S. and Gustafsson, J.A. (1997). Comparison of the ligand binding specificity and transcript distribution of the estrogen receptors α and β. Endocrinol. 138, 863–70.

    Google Scholar 

  • LeGoff, P., Montano, M.M., Schodin, D.J. and Katzenellenbogen, B.S. (1994). Phosphorylation of the estrogen receptor: identification of hormone regulated sites and examination of their influence on transcriptional activity. J. Biol. Chem. 269, 4458–66.

    Google Scholar 

  • Lech, J.J., Lewis, S.K. and Ren, L. (1996). In vivo estrogenic activity of nonylphenol in rainbow trout. Fund Appl. Toxicol. 30, 229–32.

    Google Scholar 

  • Lim, E.H., Ding, J.L. and Lam, T.J. (1991). Estradiol-induced vitellogenin gene expression in a teleost fish, Oreochromis aureus. Gen. Comp. Endocrinol. 82, 206–14.

    Google Scholar 

  • McKenna, N.J., Lanz, R.B. and O'Malley, B.W. (1999). Nuclear receptor coregulators: cellular and molecular biology. Endocrin. Rev. 20, 321–44.

    Google Scholar 

  • Morley, P., Whitfield, J.F, Vanderhyden, B.C., Tsang, B.K. and Schwartz, J.L. (1992). A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinol. 131, 1305–12.

    Google Scholar 

  • O'Malley, B.W. and Tsai, M.J. (1992). Molecular pathways of steroid receptor action. Biol. Reprod. 46, 163–7.

    Google Scholar 

  • Orlando, E.F., Denslow, N.D., Folmar, L.C. and Guillette, L.J. (1999). A comparison of the reproductive physiology of largemouth bass, Micropterus salmoides, collected from the Escambia and Blackwater Rivers in Florida. Environ. Health. Perspect. 107, 199–204.

    Google Scholar 

  • Paech, K., Webb, P., Kuiper, G.G.J.M., Nilsson, S., Gustafsson, J.A., Kushner, P.J. and Scanlan, T.S. (1997). Differential ligand activation of estrogen receptors ER α and ER β at AP1 sites. Science 277, 1508–10.

    Google Scholar 

  • Pelissero, C., Flouriot, G., Foucher, J.L., Bennetau, B., Dunogues, J., Le Gac, F. and Sumpter, J.P. (1993). Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Ster. Biochem. Mol. Biol. 44, 263–72.

    Google Scholar 

  • Ryffel, G.U. (1978). Synthesis of vitellogenin, an attractive model for investigating hormone-induced gene activation. Mol. Cell. Endocrinol. 12, 237–46.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor, New York: Cold Spring Harbor Press.

    Google Scholar 

  • Searle, P.F. and Tata, J.R. (1981). Vitellogenin gene expression in male xenopus hepatocytes during primary and secondary stimulation with estrogen in cell cultures. Cell 23, 741–6.

    Google Scholar 

  • Shapiro, D. (1982). Steroid hormone regulation of vitellogenin gene expression. Crit. Rev. Biochem. 12, 187–203.

    Google Scholar 

  • Shelby, M.D., Newbold, R.R., Tully, D.B., Chae, K. and Davis, V.L. (1996). Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environ. Health. Perspect. 104, 1296–300.

    Google Scholar 

  • Shibata, H., Spencer, T.E., Onate, S.A., Jenster, G., Tsai, S.Y., Tsai, M.J. and O'Malley, B.W. (1997). Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Rec. Prog. Horm. Res. 52, 141–65.

    Google Scholar 

  • Stancel, G.M., Boettger-Tong, H.L., Chiappetta, C., Hyder, S.M., Kirkland, J.L., Murthy, L. and Loose-Mitchell, D.S. (1995). Toxicity of endogenous and enviromnental estrogens: what is the role of elemental interactions? Environ. Health. Perspect. 103(S7), 29–33.

    Google Scholar 

  • Sumpter, J.P. and Jobling, S. (1995). Vitellogenesis as a biomarker for oestrogenic contamination of the aquatic environment. Environ. Health. Perspect. 103, 173–8.

    Google Scholar 

  • Tata, J.R. and Smith, D.F. (1979). Vitellogenesis: a versatile model for hormonal regulation of gene expression. Rec. Prog. Horm. Res. 35, 47–95.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nuc. Acid. Res. 22, 4673–80.

    Google Scholar 

  • Truss, M. and Beato, M. (1993). Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocrin. Rev. 14, 459–79.

    Google Scholar 

  • Vaillant, C., LeGuellec, D., Pakdel, F. and Valotaire, Y. (1988). Vitellogenin gene expression in primary culture of male rainbow trout hepatocytes. Gen. Comp. Endocrinol. 70, 284–90.

    Google Scholar 

  • Van der Kraak, G.J., Munkittrick, K.R., McMaster, M.E., Portt, C.B. and Chang, J.P. (1992). Exposure to bleach kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites. Toxicol. Appl. Pharmacol. 115, 224–33.

    Google Scholar 

  • Wahli, W., Dawid, I.B., Ryffel, G.U. and Weber, R. (1981). Vitellogenesis and the vitellogenin gene family. Science 212, 298–304.

    Google Scholar 

  • Zacharewski, T. (1998). Exoestrogens: mechanisms of action and strategies for identification and risk assessment. Environ. Toxicol. Chem. 17, 3–14.

    Google Scholar 

  • Zacharewski, T. (1997). In vitro assays used to assess estrogenic substances. Environ. Sci. Tech. 31, 613–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy D. Denslow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, C.J., Denslow, N.D. Development and Validation of a Species- and Gene-Specific Molecular Biomarker: Vitellogenin mRNA in Largemouth Bass (Micropterus salmoides). Ecotoxicology 8, 399–416 (1999). https://doi.org/10.1023/A:1008938606278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008938606278

Navigation