Skip to main content
Log in

Walking Robots and the Central and Peripheral Control of Locomotion in Insects

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper outlines aspects of locomotor control in insects that may serve as the basis for the design of controllers for autonomous hexapod robots. Control of insect walking can be considered hierarchical and modular. The brain determines onset, direction, and speed of walking. Coordination is done locally in the ganglia that control leg movements. Typically, networks of neurons capable of generating alternating contractions of antagonistic muscles (termed central pattern generators, or CPGs) control the stepping movements of individual legs. The legs are coordinated by interactions between the CPGs and sensory feedback from the moving legs. This peripheral feedback provides information about leg load, position, velocity, and acceleration, as well as information about joint angles and foot contact. In addition, both the central pattern generators and the sensory information that feeds them may be modulated or adjusted according to circumstances. Consequently, locomotion in insects is extraordinarily robust and adaptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arshavsky, Y.I., Orlovsky, G.N., Panchin, Y.V., Roberts, A., and Soffe, S.R. 1993. Neuronal control of swimming locomotion: Analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends in Neurosciences, 16:227-233.

    Google Scholar 

  • Bachmann, R.J., Nelson, G.M., Flannigan, W.C., Quinn, R.D., Watson, J.T., Tryba, A.K., and Ritzmann, R.E. 1997. Construction of a cockroach-like hexapod robot. In Proceedings of the 11th VPI & SU Symposium on Structural Dynamics and Control, pp. 647-654.

  • Bares, J.E. and Wettergreen, D. 1999. Dante II: Technical description, results, and lessons learned. International Journal of Robotics Research, 18:621-649.

    Google Scholar 

  • Bässler, U. 1993a. The walking-(and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators. Biological Cybernetics, 69:305-317.

    Google Scholar 

  • Bässler, U. 1993b. The femur-tibia control system of stick insects—A model system for the study of the neural basis of joint control. Brain Research Reviews, 18:207-226.

    Google Scholar 

  • Bässler, U. and Büschges, A. 1998. Pattern generation for stick insect walking movements—Multisensory control of a locomotor program. Brain Research Reviews, 27:65-88.

    Google Scholar 

  • Beer, R.D., Chiel, H.J., Quinn, R.D., Espenschied, K.S., and Larsson, P. 1992. A distributed neural network architecture for hexapod robot locomotion. Neural Computation, 4:356-355.

    Google Scholar 

  • Beer, R.D., Quinn, R.D., Chiel, H.J., and Ritzmann, R.E. 1997. Biologically inspired approaches to robotics. What can we learn from insects? Communications of the ACM, 40:31-38.

    Google Scholar 

  • Brodfuehrer, P.D., Debski, E.A., Ogara, B.A., and Friesen, W.O. 1995. Neuronal control of leech swimming. Journal of Neurobiology, 27:403-418

    Google Scholar 

  • Brooks, R.A. 1989. A robot that walks: Emergent behaviors from a carefully evolved network. Neural Computation, 1:253-262.

    Google Scholar 

  • Burrows, M. and Siegler, M.V.S. 1982. Spiking local interneurons mediate local reflexes. Science, 217:650-652.

    Google Scholar 

  • Büschges, A. 1989. Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. Journal of Experimental Biology, 144:81-111.

    Google Scholar 

  • Büschges, A., Kittmann, R., and Schmitz, J. 1994. Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 174:685-700.

    Google Scholar 

  • Büschges, A., Schmitz, J., and Bässler, U. 1995. Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of Experimental Biology, 198:435-456.

    Google Scholar 

  • Büschges, A. and Wolf, H. 1996. Gain changes in sensorimotor pathways of the locust leg. Journal of Experimental Biology, 199:2437-2445.

    Google Scholar 

  • Büschges, A. and Wolf, H. 1999. Phase-dependent presynaptic modulation of mechanosensory signals in the locust flight system. Journal of Neurophysiology, 81:959-962.

    Google Scholar 

  • Clarac, F. and Cattaert, D. 1996. Invertebrate presynaptic inhibition and motor control. Experimental Brain Research, 112:163-180.

    Google Scholar 

  • Cocatre-Zilgien, J.H. and Delcomyn, F. 1999. Modeling stress and strain in an insect leg for simulation of campaniform sensilla responses to external forces. Biological Cybernetics, 81:149-160.

    Google Scholar 

  • Cohen, A.H. and Boothe, D.L. 1999. Sensorimotor interactions during locomotion: Principles derived from biological systems. Autonomous Robots, 7(3):239-245.

    Google Scholar 

  • Cruse, H. 1979. The control of the of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiological Entomology, 4:121-124.

    Google Scholar 

  • Cruse, H. 1985. Which parameters control the leg movement of a walking insect? II. The start of the swing phase. Journal of Experimental Biology, 116:251-269.

    Google Scholar 

  • Cruse, H. 1990. What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences, 13:15-21.

    Google Scholar 

  • Cruse, H., Bartling, C., Cymbalyuk, G., Dean, J., and Dreifert, M. 1995. A modular artificial neural net for controlling a six-legged walking system. Biological Cybernetics, 72:421-430.

    Google Scholar 

  • Cruse, H., Dean, J., Kindermann, T., Schmitz, J., and Schumm, M. 1998a. Simulation of complex movements using artificial neural networks. Zeitschrift für Naturforschung, 53C:628-638.

    Google Scholar 

  • Cruse, H., Dean, J., and Suilmann, M. 1984. The contributions of diverse sense organs to the control of leg movement by a walking insect. Journal of Comparative Physiology A, 154:695-705.

    Google Scholar 

  • Cruse, H., Kindermann, T., Schumm, M., Dean, J., and Schmitz, J. 1998b. Walknet—A biologically inspired network to control six-legged walking. Neural Networks, 11:1435-1447.

    Google Scholar 

  • Cruse, H. and Knauth, A. 1989. Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus). Journal of Experimental Biology, 144:199-213.

    Google Scholar 

  • Dean, J. 1999. Control of walking in the stick insect: From physiology to modeling. Autonomous Robots, 7(3):271-288.

    Google Scholar 

  • Dean, J. and Cruse, H. 1995. Motor pattern generation. In The Handbook of Brain Theory and Neural Networks, M. Arbib (Ed.), MIT Press: Cambridge, MA, pp. 600-605.

    Google Scholar 

  • Delcomyn, F. 1980. Neural basis of rhythmic behavior in animals. Science, 210:492-498.

    Google Scholar 

  • Delcomyn, F. 1985. Walking and running. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, G.A. Kerkut and L.I. Gilbert (Eds.), Pergamon Press: London, Vol. 5, chap. 11, pp. 439-466.

    Google Scholar 

  • Delcomyn, F. 1987. Motor activity during searching and walking movements of cockroach legs. Journal of Experimental Biology, 133:111-120.

    Google Scholar 

  • Delcomyn, F. 1991a. Perturbation of the motor system in freely walking cockroaches. II. The timing of motor activity in leg muscles after amputation of a middle leg. Journal of Experimental Biology, 156:503-517.

    Google Scholar 

  • Delcomyn, F. 1991b. Leg instability after leg amputation during walking in cockroaches, Third IBRO World Congress of Neuroscience. Abstracts, P10.17, p. 83.

  • Delcomyn, F. and Nelson, M.E. 1999. Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, in press.

  • Delcomyn, F., Nelson, M.E., and Cocatre-Zilgien, J.H. 1996. Sense organs of insect legs and the selection of sensors for agile walking robots. International Journal of Robotics Research, 15:113-127.

    Google Scholar 

  • Friesen, F. 1994. Reciprocal inhibition: A mechanism underlying oscillatory animal movement. Neuroscience and Biobehavioral Reviews, 18:547-553.

    Google Scholar 

  • Getting, P.A. 1989. Emerging principles governing the operation of neural networks. Annual Review of Neuroscience, 12:185-204.

    Google Scholar 

  • Graham, D. and Bässler, U. 1981. Effects of afference sign reversal on motor activity in walking stick insects (Carausius morosus). Journal of Experimental Biology, 91:179-193.

    Google Scholar 

  • Grillner, S., Parker, D., and El Manira, A. 1998. Vertebrate locomotion—A lamprey perspective. Annals of the New York Academy of Sciences, 860:1-18.

    Google Scholar 

  • Harris-Warrick, R.M., Baro, D.J., Coniglio, L.M., Johnson, B.R., Levini, R.M., Peck, J.H., and Zhang, B. 1997. Chemical modulation of crustacean stomatogastric pattern generator networks. In Neurons, Networks, and Motor Behavior, P.S.G. Stein, S. Grillner, A.I. Selverston, and D.G. Stuart (Eds.), MIT Press: Boston, pp. 209-215.

    Google Scholar 

  • Kittmann, R. 1997. Neural mechanisms of adaptive gain control in a joint control loop—Muscle force and motoneuronal activity. Journal of Experimental Biology, 200:1383-1402.

    Google Scholar 

  • Krämer, K. and Markl, H. 1978. Flight-inhibition on ground contact in the American cockroach, Periplaneta americana—I. Contact receptors and a model for their central connections. Journal of Insect Physiology, 24:577-586.

    Google Scholar 

  • Kuenzi, F. and Burrows, M. 1995. Central connections of sensory neurones from a hair plate proprioceptor in the thoraco-coxal joint of the locust. Journal of Experimental Biology, 198:1589-1601.

    Google Scholar 

  • Matheson, T. 1997. Octopamine modulates the responses and presynaptic inhibition of proprioceptive sensory neurones in the locust Schistocerca gregaria. J. Exp. Biol., 200:1317-1325.

    Google Scholar 

  • Newland, P.L. and Burrows, M. 1997. Processing of tactile information in neuronal networks controlling leg movements of the locust. Journal of Insect Physiology, 43:107-123.

    Google Scholar 

  • Pearson, K.G. 1995. Reflex reversal in the walking systems of mammals and arthropods. In Neural Control of Movement, W.R. Ferrell and U. Proske (Eds.), Plenum Press: New York, pp. 135-141.

    Google Scholar 

  • Pearson, K.G. and Fourtner, C.R. 1975. Nonspiking interneurons in walking system of the cockroach. Journal of Neurophysiology, 38:33-52.

    Google Scholar 

  • Pearson, K.G. and Franklin, R. 1984. Characteristics of leg movement patterns of coordination in locusts walking on rough terrain. International Journal of Robotics Research, 3:102-112.

    Google Scholar 

  • Pfeiffer, F., Eltze, J., and Weidemann, H.-J. 1995. Six-legged technical walking considering biological principles. Robotics and Autonomous Systems, 14:223-232.

    Google Scholar 

  • Pipa, R. and Delcomyn, F. 1982. Nervous system. In The American Cockroach, K.G. Adiyodi and W.J. Bell (Eds.), Chapman and Hall: London, chap. 8, pp. 175-215.

    Google Scholar 

  • Quinn, R.D. and Ritzmann, R.E. 1998. Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connection Science, 10:239-254.

    Google Scholar 

  • Raibert, M. 1986. Legged robots. Communications of the ACM 29:499-514.

    Google Scholar 

  • Reingold, S.C. and Camhi, J.M. 1977. A quantitative analysis of rhythmic leg movements during three different behaviors in the cockroach, Periplaneta americana. Journal of Insect Physiology 23:1407-1420.

    Google Scholar 

  • Roberts, A., Soffe, S.R., and Perrins, R. 1997. Spinal networks controlling swimming in hatchling Xenopus tadpoles. In Neurons, Networks, and Motor Behavior, P.S.G. Stein, S. Grillner, A.I. Selverston, and D.G. Stuart (Eds.), MIT Press: Boston, pp. 83-89.

    Google Scholar 

  • Robertson, R.M. and Pearson, K.G. 1985. Neural circuits in the flight system of the locust. Journal of Neurophysiology, 53:110-128.

    Google Scholar 

  • Selverston, A.I. and Moulins, M. (Eds.) 1987. The Crustacean Stomatogastric System, Springer: Berlin.

    Google Scholar 

  • Selverston, A.I., Elson, R., Rabionvich, M., Huerta, R., and Abarbanel, H. 1998. Basic principles for generating motor output in the stomatogastric ganglion. Annals of the New York Academy of Sciences, 860:35-50.

    Google Scholar 

  • Skinner, F.K. and Mulloney, B. 1998. Intersegmental coordination in invertebrates and vertebrates. Current Opinion in Neurobiology, 8:725-732.

    Google Scholar 

  • Sombati, S. and Hoyle, G. 1984. Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator octopamine. Journal of Neurobiology, 15:481-506.

    Google Scholar 

  • Stein, W. and Sauer, A.E. 1998. Modulation of sensorimotor pathways associated with gain changes in a posture-control network of an insect. Journal of Comparative Physiology A, 183:489-501.

    Google Scholar 

  • Wolf, H. and Burrows, M. 1995. Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. Journal of Neuroscience, 15:5623-5636.

    Google Scholar 

  • Wong, R.K.S. and Pearson, K.G. 1976. Properties of the trochanteral hair plate and its functions in the control of walking in the cockroach. Journal of Experimental Biology, 64:233-249.

    Google Scholar 

  • Zill, S.N. and Moran, D.T. 1981. The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana. Journal of Experimental Biology, 94:57-75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delcomyn, F. Walking Robots and the Central and Peripheral Control of Locomotion in Insects. Autonomous Robots 7, 259–270 (1999). https://doi.org/10.1023/A:1008928605612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008928605612

Navigation