Skip to main content
Log in

Model of Familiarity Discrimination in the Perirhinal Cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Much evidence indicates that recognition memory involves two separable processes, recollection and familiarity discrimination, with familiarity discrimination being dependent on the perirhinal cortex of the temporal lobe. Here, we describe a new neural network model designed to mimic the response patterns of perirhinal neurons that signal information concerning the novelty or familiarity of stimuli. The model achieves very fast and accurate familiarity discrimination while employing biologically plausible parameters and Hebbian learning rules. The fact that the activity patterns of the model's simulated neurons are closely similar to those of neurons recorded from the primate perirhinal cortex indicates that this brain region could discriminate familiarity using principles akin to those of the model. If so, the capacity of the model establishes that the perirhinal cortex alone may discriminate the familiarity of many more stimuli than current neural network models indicate could be recalled (recollected) by all the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty provides an evolutionary advantage, thereby providing a reason for the existence of a familiarity discrimination network in addition to networks used for recollection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia and the hippocampal-anterior thalamic axis. Behavioral Brain Sci. 22:425-498.

    Google Scholar 

  • Aggleton JP, Shaw C (1996) Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychol. 34:51-62.

    Google Scholar 

  • Amit DJ (1989) Modeling Brain Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of d´ej`a vu and vivid "memories" in human temporal lobe epilepsy. Brain 117:71-90.

    Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: Long-term potentiation in hippocampus. Nature 361:31-39.

    Google Scholar 

  • Bogacz R, Brown MW, Giraud-Carrier C (1999) High capacity neural networks for familiarity discrimination. In: Proceedings of International Conference on Artificial Neural Networks '99, Edinburgh. Institution of Electrical Engineers, London, pp. 773-776.

    Google Scholar 

  • Bogacz R, Brown MW, Giraud-Carrier C (in press) Model of cooperation between recency, familiarity and novelty neurons in the perirhinal cortex. In: Bower J, ed. Computational Neuroscience: Trends in Research Elsevier, New York.

  • Borisyuk RM, Denham MJ, Hoppensteadt, FC (1999) An oscillatory model of novelty detection in hippocampus (Abstract). In: Proceedings of the Third International Conference on Cognitive and Neural System, Boston University Press, Boston.

    Google Scholar 

  • Brown MW, Xiang JZ (1998) Recognition memory: Neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55:149-189.

    Google Scholar 

  • Cassell M (1980) The number of cells in the striatum pyramidale of the rat and human hippocampal formation. Ph.D. thesis, University of Bristol.

  • Cho K, Kemp N, Noel J, Aggleton JP, Brown MW, Bashir ZI (2000) A new form of long-term depression in the perirhinal cortex. Nature Neurosci. 3:150-156.

    Google Scholar 

  • Cover TM(1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Elec. Computers 14:326-334.

    Google Scholar 

  • Cragg BG (1975) The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain 98:81-90.

    Google Scholar 

  • Fohlmeister C, Gerstner W, Ritz R, van Hemmen JL (1995) Spontaneous excitation in the visual cortex: Stripes, spirals, rings and collective bursts. Neural Comput. 7:905-914.

    Google Scholar 

  • Foldiak P, Young M (1995) Sparse coding in the primate cortex. In: Arbib MA, ed. Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  • Gerstner W (1998a) Populations of spiking neurons. In: Maas W, Bishop C, eds. Pulsed Neural Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  • Gerstner W (1998b) Spiking neurons. In: Maas W, Bishop C, eds. Pulsed Neural Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  • Granger E, Grossberg S, Rubin MA, Streilein WW (1998) Familiarity discrimination of radar pulses. Adv. Neural Info. Proc. Sys. 11:875-881.

    Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the Theory of Neural Computations. Addison-Wesley, Redwood City, CA.

    Google Scholar 

  • Hintzman DL, Caulton DA, Levitin DJ (1998) Retrieval dynamics in recognition and list discrimination: Further evidence of Familiarity Discrimination in the Perirhinal Cortex 23 separate processes of familiarity and recall. Memory and Cognition 26:449-462.

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79:2554-2558.

    Google Scholar 

  • Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A (1998) MR volumetric analysis of the human entorhinal, perirhinal and temporopolar cortices. Am. J. Neuroradiol. 19:659-671.

    Google Scholar 

  • Ito M (1989) Long-term depression. Ann. Rev. Neurosci. 12:85-102.

    Google Scholar 

  • Kazer JF, Sharkey AJC (1999) The septo-hippocampal system and anxiety: A robot simulation. In: Proceedings of the International Conference on Artificial Neural Networks '99, Edinburgh. Institution of Electrical Engineers, London, pp. 389-394.

    Google Scholar 

  • Kirov SA, Sorra KE, Harris KM (1999) Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J. Neurosci. 19:2876-2886.

    Google Scholar 

  • Kobatake E, Wang G, Tanaka K (1998) Effects of shape discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80:324-330.

    Google Scholar 

  • Kohonen T (1989) Self-organisation and Associative Memory. (3rd ed.). Springer-Verlag, Heidelberg.

    Google Scholar 

  • Kohonen T, Oja E, Ruohonen M (1974) Adaptation of a linear system to a finite set of patterns occurring in an arbitrarily varying order. Acta Polytech. Scand. Elect. Eng. 25.

  • Kowalczyk A (1997) Estimates of storage capacity of multilayer perceptron with threshold logic hidden units. Neural Networks 10:1417-1433.

    Google Scholar 

  • Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69:1918-1929.

    Google Scholar 

  • Mandler G (1980) Recognising: The judgement of previous occurrence. Psychol. Rev. 87:252-271.

    Google Scholar 

  • Markram H, Tsodyks M (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807-810.

    Google Scholar 

  • Marr D (1970) Atheory for cerebral neocortex. Proc.Roy. Socy. Lond. B 176:161-234.

    Google Scholar 

  • Marr D (1971) Simple memory: A theory of archicortex. Phil. Trans. Roy. Socy. B 262:23-81.

    Google Scholar 

  • McCulloch WS, Pitts W (1943) Alogical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 5:115-133.

    Google Scholar 

  • Miller EK, Desimone R (1993) Scopolamine effects short-term memory but not inferior temporal neurons. NeuroReport 4:81-84.

    Google Scholar 

  • Mott DD, Xie C, Wilson WA, Swartzwelder HS, Lewis DV (1993) GABAB autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus. J. Neuropsychol. 69:674.

    Google Scholar 

  • Murray EA (1996) What have ablation studies told us about the neural substrates of stimulus memory? Seminars in Neurosc. 8:13-22.

    Google Scholar 

  • Murray EA, Bussey TJ (1999) Perceptual-mnemonic functions of the perirhinal cortex. Trends in Cog. Sci. 3:142-151.

    Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-609.

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ringo JL (1995) Brevity of processing in a mnemonic task. J. Neurophysiol. 73:1712-1715.

    Google Scholar 

  • Roberts S, Tarassenko L (1995) A probabilistic resource allocating networks for novelty detection. Neural Comput. 6:270-284.

    Google Scholar 

  • Roediger HL III, McDermott KB (1995) Creating false memories: Remembering words not present in list. J. Exper. Psychol: Learning, Memory and Cognition 21:803-814.

    Google Scholar 

  • Rolls ET (1996) A theory of hippocampal function in memory. Hippocampus 6:601-620.

    Google Scholar 

  • Rolls ET, Tovee MJ (1994) Processing speed in the cerebral cortex and neurophysiology of visual masking. Proc. Roy. Socy. Lond. B 257:9-15.

    Google Scholar 

  • Saksida LM, Bussey TS (1998) Towards a neural network model of visual object identification in primate infero-temporal cortex. Soc. Neurosci. Abst. 24:1906.

    Google Scholar 

  • Schacter DL (1999) The seven sins of memory: Insight from psychology and cognitive neuroscience. Am. Psychologist 54:182-203.

    Google Scholar 

  • Schacter DL, Reiman E, Curran T, Yun L, Bandy D, McDermott KB, Roediger HL III (1996) Neuroanatomical correlates of veridical and illusory memories: Evidence from positron emission tomography. Neuron 17:267-274.

    Google Scholar 

  • Schacter DL, Verfaellie M, Anes MD, Racine CA (1998) When the true recognition suppresses false recognition: Evidence from amnesic patients. J. Cog. Neurosci. 10:668-679.

    Google Scholar 

  • Schadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computations and information coding. J. Neurosci. 18:3870-3896.

    Google Scholar 

  • Seeck M, Michael CM, Mainwaring N, Cosgrove R, Blume H, Ives J, Landis T, Schomer DL (1997) Evidence for rapid face recognition from human scalp and intracranial electrodes. NeuroReport 8:2749-2754.

    Google Scholar 

  • Sorra KE, Harris KM (1998) Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18:658-671.

    Google Scholar 

  • Standing L (1973) Learning 10,000 pictures. Qtly. J. Exper. Psychol. 25:207-222.

    Google Scholar 

  • Suzuki WA (1996) The anatomy, physiology and functions of the perirhinal cortex. Curr. Opinion in Neurobiol. 6:172-186.

    Google Scholar 

  • Xiang JZ, Brown MW (1997) Processing visual familiarity and recency information: Neuronal interactions in area TE and rhinal cortex (Abstract). Brain Res. Abs. 14:69.

    Google Scholar 

  • Xiang JZ, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacol. 37:657-676.

    Google Scholar 

  • Ziakopoulos Z, Tillett CW, Brown MW, Bashir ZI (1999) Input-and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neurosci. 92:459-472.

    Google Scholar 

  • Ziakopoulos Z, Brown MW, Bashir ZI (2000) GABAB receptors mediate frequency dependent depression of excitatory potentials in rat perirhinal cortex in Vitro. Eur. J. Neurosci. 12:803-809.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogacz, R., Brown, M.W. & Giraud-Carrier, C. Model of Familiarity Discrimination in the Perirhinal Cortex. J Comput Neurosci 10, 5–23 (2001). https://doi.org/10.1023/A:1008925909305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008925909305

Navigation