Skip to main content
Log in

Quantitative analysis of the regulation of leukocyte chemosensory migration by a vascular prosthetic biomaterial

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The need for improved, infection-resistant vascular biomaterials calls for more objective evaluation of the immune pathophysiology of implantable prosthetic materials. In this study we have developed a new strategy to quantitatively characterize population-averaged responses of immune cell migration on vascular prosthetic materials. This approach, incorporating a chemokinetically regulated “biomaterial-gel” sandwich configuration, was applied to quantify both random and directed modes of the chemosensory migration of human neutrophil leukocytes on expanded polytetrafluoroethylene (ePTFE). Our studies show that (a) microporous, synthetic materials like ePTFE suppress the basal rate of random cell migration relative to that reported on non-porous control surfaces; (b) stimulation with chemoattractant (formyl peptide) can significantly elevate rates of random and directed migration on ePTFE; and (c) protein conditioning of ePTFE with albumin or immunoglobulin G can differentially modulate the rates and relative proportion of random and directional components of leukocyte migration response to chemoattractant. This, to our knowledge, is the first objective quantitation of chemokinetically regulated cell migration on implantable prosthetic materials. ©2000 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. MERRITT, J. W. SHAFER and S. A. BROWN, J. Biomed. Mater. Res. 13 (1979) 101.

    Google Scholar 

  2. K. MERRITT, V. M. HITCHINS and A. R. NEALE, ibid. 44 (1999) 261.

    Google Scholar 

  3. S. D. ELEK and P. D. CONEN, Br. J. Exp. Pathol. 38 (1957) 573.

    Google Scholar 

  4. D. J. BHAT, V. A. TELLIS, W. I. KOHLBERG, B. DRISCOLL and F. J. VEITH, Surgery 87 (1980) 445.

    Google Scholar 

  5. S. H. DOUGHERTY and R. L. SIMMONS, Curr. Problems Surg. 19 (1982) 289.

    Google Scholar 

  6. D. A. KATZ, B. HAIMOVICH and R. S. GRECO, Surgery 116 (1994) 446.

    Google Scholar 

  7. C. C. CHANG, S. M. LIEBERMAN and P. V. MOGHE, Biomaterials 20 (1999) 273.

    Google Scholar 

  8. P. SWARTBOL, L. TRUEDSSON, H. PARSSON and L. NORGREN, J. Biomed. Mater. Res. 32 (1996) 669.

    Google Scholar 

  9. M. B. GORBET, E. L. YEO and M. V. SEFTON, ibid. 44 (1999) 289.

    Google Scholar 

  10. W. ZIMMERLI, F. A. WALDVOGEL, P. VAUDAUX and U. E. NYGEGGER, J. Infections Diseases 146 (1982) 487.

    Google Scholar 

  11. A. FINN, N. MOAT, N. REBUCK, N. KLEIN, S. STROBEL and M. ELLIOTT, Agents Actions 38 (1993) C44.

    Google Scholar 

  12. J. P. CRISTOL, B. CANAUD, H. RABESANDRATANA, I. GAILLARD, A. SERRE and C. MION, Nephrol Dial Transplant 9 (1994) 389.

    Google Scholar 

  13. S. S. KAPLAN, R. E. BASFORD, R. L. KORMOS, R. L. HARDESTY, R. L. SIMMONS, E. M. MORA, M. CARDONA and B. L. GRIFFITHASAIO Transactions 36 (1990) M172.

    Google Scholar 

  14. A. PIZZOFERRATO, A. VESPUCCI, G. CIAPETTI And S. STEA, in “Techniques of Biocompatibility Testing” edited by D. F. Williams (CRC Press, Inc., Boca Raton, 1986), vol. II, pp. 109.

    Google Scholar 

  15. R. D. NELSON, P. G. QUIE and R. L. SIMMONS, J. Immunol. 118 (1975) 1650.

    Google Scholar 

  16. J. E. CUTLER, Proc. SO. Exp. Biol. Med. 147 (1974) 471.

    Google Scholar 

  17. D. A. LAUFFENBURGER, C. ROTHMAN and S. H. ZIGMOND, J. Immunol. 131 (1983) 940.

    Google Scholar 

  18. J. D. ANDRADE and V. HLADY, Ann. New York Acad. Sci. 516 (1987) 158.

    Google Scholar 

  19. A. FERRANTE and Y. H. THONG, J. Immunological Methods 36 (1980) 109.

    Google Scholar 

  20. R. T. TRANQUILLO, S. H. ZIGMOND and D. A. LAUFFENBURGER, Cell Motility and the Cytoskeleton 11 (1988) 1.

    Google Scholar 

  21. D. A. LAUFFENBURGER, Agents Actions [Suppl.] 12 (1983).

  22. M. ABRAMOWITZ and L. A. STEGUN,“Handbook of Mathematical Functions” (Dover PRESS, New York, 1965).

    Google Scholar 

  23. A. CONSTANTINIDES, “Applied Numerical Methods with Personal Computers” Chemical Engineering Series (McGraw-Hill, New York, 1987).

    Google Scholar 

  24. W. ALT, J. Math. Biol. 9 (1980) 147.

    Google Scholar 

  25. H. M. BUETTNER, D. A. LAUFFENBURGER and S. H. ZIGMOND, AlChE J. 35 (1989) 459.

    Google Scholar 

  26. G. A. DUNN, in “Biology of the Chemotactic Response” edited by J. M. Lacke and P. C. Wilkinson (Cambridge University, Cambridge, 1981) p. 1.

    Google Scholar 

  27. L. BENTON, U. PUROHIT, M. KHAN and R. GRECO, J. Surgical Res. 64 (1996) 116.

    Google Scholar 

  28. C. C. CHANG, R. S. SCHLOSS, T. D. BHOJ and P. V. MOGHE, J. Biomed. Mater. Res. (submitted) (1999).

  29. C. NATHAN, Q. XIE, L. HALBWACHS-MECARELLI and W. W. JIN, J. Cell Biology 122 (1993) 243.

    Google Scholar 

  30. J. CORDERO, L. MUNUERA and M. D. FOLGUEIRA, J. Bone Joint Surg. 76B (1994) 717.

    Google Scholar 

  31. J. W. ALEXANDER, J. Z. KAPLAN and W. A. ALTEMEIER, Ann. Surg. 165 (1967) 192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.C., Lieberman, S.M. & Moghe, P.V. Quantitative analysis of the regulation of leukocyte chemosensory migration by a vascular prosthetic biomaterial. Journal of Materials Science: Materials in Medicine 11, 337–344 (2000). https://doi.org/10.1023/A:1008925722623

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008925722623

Keywords

Navigation