Skip to main content

Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons

Abstract

The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons are studied analytically. The analysis reveals a rich repertoire of states, including synchronous states in which neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity; and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than the global oscillation frequency. The network can switch between these states, provided the external frequency, or the balance between excitation and inhibition, is varied. Two types of network oscillations are observed. In the fast oscillatory state, the network frequency is almost fully controlled by the synaptic time scale. In the slow oscillatory state, the network frequency depends mostly on the membrane time constant. Finite size effects in the asynchronous state are also discussed.

This is a preview of subscription content, access via your institution.

References

  1. Abbott LF, van Vreeswijk C (1993) Asynchronous states in a network of pulse-coupled oscillators. Phys. Rev. E 48:1483-1490.

    Google Scholar 

  2. Abramowitz M, Stegun IA (1970) Tables of Mathematical Functions. Dover Publications, New York.

    Google Scholar 

  3. Amit DJ, Brunel N (1997a) Dynamics of a recurrent network of spiking neurons before and following learning. Network 8:373-404.

    Google Scholar 

  4. Amit DJ, Brunel N (1997b) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex 7:237-252.

    Google Scholar 

  5. Amit DJ, Evans M, Abeles M (1990) Attractor neural networks with biological probe neurons. Network 1:381-405.

    Google Scholar 

  6. Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network retrieving at low spike rates I: Substrate-spikes, rates and neuronal gain. Network 2:259-274.

    Google Scholar 

  7. Bernander O, Koch C, Usher M (1991) Synaptic background activity determines spatio-temporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88:11569-11573.

    Google Scholar 

  8. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15:47-60.

    Google Scholar 

  9. Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11:1621-1671.

    Google Scholar 

  10. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287:139-171.

    Google Scholar 

  11. Buzsaki G, Urioste R, Hetke J, Wise K (1992) High frequency network oscillation in the hippocampus. Science 256:1025-1027.

    Google Scholar 

  12. Chow C (1998) Phase-locking in weakly heterogeneous neuronal networks. Physica D 118:343-370.

    Google Scholar 

  13. Csicsvari J, Hirase H, Czurko A, Buzsáki G (1998) Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: An ensemble approach in the behaving rat. Neuron 21:179-189.

    Google Scholar 

  14. Draguhn A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189-193.

    Google Scholar 

  15. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186-189.

    Google Scholar 

  16. Fusi S, Mattia M (1999) Collective behavior of networks with linear (VLSI) integrate and fire neurons. Neural Comput. 11:633-652.

    Google Scholar 

  17. Gerstner W (1995) Time structure of the activity in neural network models. Phys. Rev. E 51:738-758.

    Google Scholar 

  18. Gerstner W, van Hemmen L, Cowan J (1996) What matters in neuronal locking? Neural Comput. 8:1653-1676.

    Google Scholar 

  19. Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory neurons. Physica D 72:259-282.

    Google Scholar 

  20. Gray CM (1994) Synchronous oscillations in neuronal systems: Mechanisms and functions. J. Comput. Neurosci. 1:11-38.

    Google Scholar 

  21. Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput. 7:307-337.

    Google Scholar 

  22. Hirsch MW, Smale S (1974) Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.

    Google Scholar 

  23. Hopfield JJ, Herz AVM (1995) Rapid local synchronization of action potentials: Towards computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. USA 92:6655-6662.

    Google Scholar 

  24. McLeod K, Laurent G (1996) Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274:976-979.

    Google Scholar 

  25. Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50:1645-1662.

    Google Scholar 

  26. Ricciardi LM (1977) Diffusion Processes and Related Topics on Biology. Springer-Verlag, Berlin.

    Google Scholar 

  27. Risken H (1984) The Fokker Planck Equation: Methods of Solution and Applications. Springer-Verlag, Berlin.

    Google Scholar 

  28. Terman D, Kopell N, Bose A (1998) Dynamics of two mutually coupled slow inhibitory neurons. Physica D 117:241-275.

    Google Scholar 

  29. Terman D, Wang DL (1995) Global competition and local cooperation in a network of neural oscillators. Physica D 81:243:1319-1325.

    Google Scholar 

  30. Traub RD, Whittington MA, Collins SB, Buzsáki G, Jefferys JGR (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. 493:471-484.

    Google Scholar 

  31. Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4:259-284.

    Google Scholar 

  32. Tsodyks MV, Mit'kov I, Sompolinsky H (1993) Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Phys. Rev. Lett. 71:1280-1283.

    Google Scholar 

  33. Tsodyks MV, Sejnowski T (1995) Rapid state switching in balanced cortical network models. Network 6:111-124.

    Google Scholar 

  34. Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge.

    Google Scholar 

  35. Usher M, Stemmler M, Koch C, Olami Z (1994) Network amplification of local fluctuations causes high spike rate variability, fractal firing patterns and oscillatory local field potentials. Neural Comput. 6:795-836.

    Google Scholar 

  36. van Vreeswijk C (1996) Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E 54:5522-5537.

    Google Scholar 

  37. van Vreeswijk C, Abbott L, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J. Comput. Neurosci. 1:313-321.

    Google Scholar 

  38. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724-1726.

    Google Scholar 

  39. van Vreeswijk C, Sompolinsky H (1998) Chaotic balanced state in a model of cortical circuits. Neural Comput. 10:1321-1371.

    Google Scholar 

  40. Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16:6402-6413.

    Google Scholar 

  41. White JA, Chow CC, Soto-Treviño C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5:5-16.

    Google Scholar 

  42. Whittington MA, Traub RD, Jefferys JGR (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612-615.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brunel, N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J Comput Neurosci 8, 183–208 (2000). https://doi.org/10.1023/A:1008925309027

Download citation

  • recurrent network
  • synchronization