Skip to main content
Log in

Electrically active grain boundaries in ZnO varistors by liquid-infiltration method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The varistors were fabricated by spreading a thin layer of Pr6O11 powder paste on the surface of ZnO pellets and heating to various temperatures (1200–1400 °C) and times (0–60 min). Higher heat-treatment temperatures and/or times resulted in progressively higher breakdown voltages. Eventually the devices became varistor, which was attributed to the formation of a liquid (ZnO-PrOx) layer between the grains. Microstructures of cross-sections of wetting pellets have shown that the infiltration rate was increased with the amount of Co3O4 and heat-treatment temperature. In addition, on the basis of the small variations of the varistor properties per grain boundary (e.g., threshold voltage, donor concentration, and barrier height), the number of active grain boundaries are believed to be increased when the samples were heat-treated above the liquid-phase temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. MATSUOKA, Jpn. J. Appl. Phys. 10 (1971) 736.

    Google Scholar 

  2. W. G. MORRIS, J. Vac. Sci. Technol. 13 (1976) 926.

    Google Scholar 

  3. D. R. CLARKE, J. Appl. Phys. 49 (1978) 2407.

    Google Scholar 

  4. W. D. KINGERY, J. B. VANDER SANDE and T. MATAMURA, J. Am. Ceram. Soc. 62 (1979) 221.

    Google Scholar 

  5. K. MUKAE, K. TSUDA and I. NAGASAWA, J. Appl. Phys. 16 (1977) 1361.

    Google Scholar 

  6. P. R. EMTAGE, ibid. 48 (1977) 4372.

    Google Scholar 

  7. B. BHUSHAN, S. KASHYAP and K. CHOPRA, ibid. 52 (1981) 2932.

    Google Scholar 

  8. L. M. LEVINSON and H. PHILLIP, ibid. 46 (1975) 1332.

    Google Scholar 

  9. L. M. LEVINSON and H. PHILLIP, ibid. 48 (1977) 1621.

    Google Scholar 

  10. J. D. LEVINE, Crit. Rev. Solid State Sci. 5 (1975) 597.

    Google Scholar 

  11. K. EDA, J. Appl. Phys. 49 (1978) 2964.

    Google Scholar 

  12. G. MAHAN, L. LEVINSON and H. PHILLIP, ibid. 50 (1979) 2799.

    Google Scholar 

  13. A. KUSY and T. G. M. KLEINPENNING, ibid. 54 (1983) 2900.

    Google Scholar 

  14. K. EDA, A. IGA and M. MATSUOKA, ibid. 51 (1980) 2678.

    Google Scholar 

  15. K. SATO and Y. TAKADA, ibid. 53 (1982) 8819.

    Google Scholar 

  16. T. K. GUPTA, W. G. CARLSON and P. L. HOWER, ibid. 52 (1981) 4104.

    Google Scholar 

  17. Y. M. CHIANG, W. D. KINGERY and L. M. LEVINSON, ibid. 53 (1982) 1765.

    Google Scholar 

  18. N. SHOHATA and J. YOSHIDA, Jpn. J. Appl. Phys. 16 (1977) 2299.

    Google Scholar 

  19. T. MIYOSHI, K. MAEDA, K. TAKAHASHI and T. YAMAZAKI, "Advances in Ceramics", Vol. 1, edited by L. M. Levinson (American Ceramic Society, Westerville, OH, 1981) p. 309.

    Google Scholar 

  20. H. OKUMA, N. AMIJI, M. SUZUKI and Y. TANNO, in "Advances in Ceramics", Vol. 1, edited by M. F. Yan and A. H. Heuer (American Ceramic Society, Westerville, OH, 1983) p. 41.

    Google Scholar 

  21. W. G. CARLSON and T. K. GUPTA, J. Appl. Phys. 53 (1982) 5746.

    Google Scholar 

  22. F. GREUTER, B. BLATTER, M. ROSSINELLI and F. STUCKI, in "Advances in Varistor Technology", edited by L. M. Levinson (American Ceramic Society, Westerville, OH, 1989) p. 281.

    Google Scholar 

  23. G. E. PIKE, in "Grain boundaries in Semiconductors", edited by H. J. Leamy, G. E. Pike and C. H. Seager (Mater. Res. Soc. Symp. Proc. 5, Elsevier Science Publishing, New York, 1982), p. 369.

    Google Scholar 

  24. B. BLATTER and F. GREUTER, Phys. Rev. B 33 (1986) 3952.

    Google Scholar 

  25. F. GREUTER Idem, ibid. 34 (1986) 8555.

    Google Scholar 

  26. F. GREUTER, B. BLATTER, M. ROSSINELLI and F. STUCKI, in "Advances in Varistor Technology", edited by L. M. Levinson (American Ceramic Society, Westerville, OH, 1989) p. 31.

    Google Scholar 

  27. M. INADA, Jpn. J. Appl. Phys. 17(1) (1978) 1.

    Google Scholar 

  28. M. INADA, ibid. 18(8) (1979) 1439.

    Google Scholar 

  29. J. R. LEE and Y. M. CHIANG, Solid State Ion. 75 (1995) 79.

    Google Scholar 

  30. K. MUKAE, K. TSUDA and I. NAGASAWA, J. Appl. Phys. 50 (1979) 4475.

    Google Scholar 

  31. A. B. ALLES and V. L. BURDICK, ibid. 70 (1991) 6883.

    Google Scholar 

  32. S. Y. CHUN, N. WAKIYA, H. FUNAKUBO, K. SHINOZAKI and N. MIZUTANI, J. Am. Ceram. Soc. 80(4) (1997) 995.

    Google Scholar 

  33. S. Y. CHUN, N. WAKIYA, K. SHINOZAKI and N. MIZUTANI, J. Mater. Res. 13(8) (1998) 2110.

    Google Scholar 

  34. K. MUKAE, K. TSUDA and I. NAGASAWA, J. Appl. Phys. 50 (1979) 4475.

    Google Scholar 

  35. N. B. HANNAY, "Semiconductors" (Reinhold, New York, 1950).

    Google Scholar 

  36. D. R. CLARKE, J. Appl. Phys. 49 (1978) 2407.

    Google Scholar 

  37. W. G. MORRIS and J. W. CAHN, in "Grain Boundaries in Engineering Materials", edited by J. L. Walter, J. H. Westbrook and D. A. Woodford (Claitor's Publishing Division, Baton Rouge, LA, 1974).

    Google Scholar 

  38. I. BURN and S. NEIRMAN, J. Mater. Sci. 17 (1982) 3510.

    Google Scholar 

  39. S. N. BAI and T. Y. TSENG, J. Appl. Phys. 74 (1993) 695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, SY., Shinozaki, K. & Mizutani, N. Electrically active grain boundaries in ZnO varistors by liquid-infiltration method. Journal of Materials Science: Materials in Electronics 11, 73–80 (2000). https://doi.org/10.1023/A:1008912421936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008912421936

Keywords

Navigation