Skip to main content
Log in

RuO2/Ru electrode on Si3N4/Si substrate for microelectromechanical systems devices based on Pb(Zr1-xTix)O3 film and surface micromachining

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

RuO2/Ru conducting films were deposited on low stress Si3N4/Si substrates by reactive r.f. sputtering deposition at a substrate temperature of 400°C to introduce a new bottom electrode for microelectromechanical system devices based on a Pb(Zr1-xTix)O3 film and a surface micromachining technique with high temperature processes. X-ray diffraction and scanning electron microscopy measurements after heat treatment at 700°C were conducted to investigate structural stability of the RuO2/Ru films, which showed no silicide and silicon oxide formations by the heat treatment. Interfacial structures of the film with the heat treatment were similar to those of the as-deposited films. The surface of the film with the heat treatment consisted of larger grains than those of the as-deposited film. Rutherford backscattering spectrometry and Auger electron spectroscopy showed no interfacial reactions between the RuO2/Ru and the Si3N4. In order to investigate the feasibility of the RuO2/Ru as a bottom electrode, Pb(Zr0.53Ti0.47)O3 films were deposited by metalorganic decomposition. After deposition of a Pb(Zr0.53Ti0.47)O3 film at 700°C for 30 min, the interface structure between the RuO2/Ru and the Pb(Zr0.53Ti0.47)O3 film showed no interface reactions. The electrical properties of the PZT film on the RuO2/Ru were not changed before and after an HF etching to make an air gap, even though the piezoelectric coefficients on the RuO2/Ru were lower than on the Pt/Ti. Therefore, the RuO2/Ru conducting film could be used for a bottom electrode on the Si3N4/Si for a microelectromechanical system device based on a Pb(Zr1-xTix)O3 film and a surface micromachining technique with high temperature processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Polla, Microelectron Eng. 29 (1995) 51.

    Google Scholar 

  2. D. L. Polla, P. J. Schiller and L. F. Francis, Proc. SPIE 2291 (1994) 108.

    Google Scholar 

  3. D. L. Polla and P. J. Schiller, Integr. Ferroelectr. 7 (1995) 359.

    Google Scholar 

  4. S. B. Krupanidhi and D. Roy, J. Appl. Phys. 72 (1992) 620.

    Google Scholar 

  5. M. Klee, R. Eusemann, R. Wase, W. Brand and H. Van Hal, J. Appl. Phys. 72 (1992) 1566.

    Google Scholar 

  6. T. Hase, T. Sakuma, Y. Miyasaka, K. Hirata and N. Hosokawa, Jpn. J. Appl. Phys. 32 (1993) 4061.

    Google Scholar 

  7. J. H. Kim, Y. S. Yoon and D. L. Polla, J. Korean Phys. Soc. 32 (1998) 1580.

    Google Scholar 

  8. J. H. Kim, Y. S. Yoon and D. L. Polla, Jpn. J. Appl. Phys. 37 (1998) 948.

    Google Scholar 

  9. A. Grill, D. Beach, C. Smart and W. Kane, Mater. Res. Soc. Symp. Proc. 310 (1993) 189.

    Google Scholar 

  10. H. N. AL-Shareef, O. Auciello and A. I. Kingon, J. Appl. Phys. 77 (1995) 2146.

    Google Scholar 

  11. Y. S. Yoon, J. H. Kim, M. T. Hsieh and D. L. Polla, J. Korean Phys. Soc. 32 (1998) 1760.

    Google Scholar 

  12. S. P. Muraka, “Silicide for VLSI Applications”, (Academic Press Inc., Orlando, 1983) pp. 103–106.

    Google Scholar 

  13. I. K. Yoo and S. B. Desu, Proceeding of the International Symposium on Application of Ferroelectrics (ISAF-92), edited by M. Liu, A. Safari, A. I. Kingon and G. Haertling, (IEEE, New York, 1992), p. 225.

    Google Scholar 

  14. L. A. Bursi ll, Ian M. Reaney, D. P. Vijay and S. B. Desu, J. Appl. Phys. 75 (1994) 1521.

    Google Scholar 

  15. H. Maiwa, N. Ichinose and K. Okazaki, Jpn. J. Appl. Phys. 33 (1994) 5223.

    Google Scholar 

  16. Q. Wang, W. L. Gladfelter, D. F. Evans, Y. Fan and A. Franciosi, J. Vac. Sci. Technol. 14 (1996) 747.

    Google Scholar 

  17. J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon and D. L. Polla, Integr. Ferroelectr. 15 (1997) 325.

    Google Scholar 

  18. J i e-Fang L i, P. Moses and D. Viehland, Rev. Sci. Instrum. 66 (1995) 215.

    Google Scholar 

  19. Y. S. Yoon, J. H. Kim, W. K. Choi and S. J. Lee, J. Mater. Sci. 31 (1996) 5877.

    Google Scholar 

  20. C. S. Petersson, J. E. E. Baglin, J. J. Dempsey, F. M. D'eurle and S. J. La Placa, J. Appl. Phys. 53 (1982) 4866.

    Google Scholar 

  21. Y. S. Yoon, J. H. Kim, M. T. Hsieh and D. L. Polla, J. Korean Phys. Soc. 32 (1998) 1760.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, Y.S., Kim, J.H., Schimidt, A.M. et al. RuO2/Ru electrode on Si3N4/Si substrate for microelectromechanical systems devices based on Pb(Zr1-xTix)O3 film and surface micromachining. Journal of Materials Science: Materials in Electronics 9, 465–471 (1998). https://doi.org/10.1023/A:1008910326521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008910326521

Keywords

Navigation