Skip to main content
Log in

Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Mechanical fatigue of bone leads to micro-cracking which is associated with remodeling, establishing a balance in the microcrack population of the living tissue, thus, in the steady-state, the microstructure of bone provides sites of discontinuity acting as stress raisers. Hence fracture toughness plays a decisive role in bone functionality by determining the level to which the material can be stressed in the presence of cracks, or, equivalently, the magnitude of cracking which can be tolerated at a given stress level. Cortical bone, which behaves as a quasi-brittle solid when fractured, was tested as short-rod chevron-notched tension specimens (CNT). The main features of the CNT specimen are its geometry and the V shaped notch. The notch leads to steady-state crack propagation whilst the requested geometry allows a diameter 40% smaller than the thickness of a standard compact tension specimens (CT). These features are essential to distinguish the inhomogeneties in the fracture properties of materials like bone. Bone structure and crack propagation of the CNT specimens were analyzed using X-ray computed micro-tomography (XMT), which is a non-invasive imaging technique. The unique feature of the micro-CT is the high resolution three-dimensional image which consists of multi-sliced tomographs taken in a fine pitch along the rotational axis. Fracture toughness (K IC) computed according to the peak load was 4.8 MNm-3/2 while that derived from experimental calibration tests using XMT was 4.9 MNm-3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. LAKES, S. NAKAMIRA, J. C. BEHIRI and W. BONFIELD, J. Biomech. 10 (1990) 967.

    Google Scholar 

  2. J. D. CURREY, J. Microsc. Sci. 103 (1962) 11.

    Google Scholar 

  3. W. BONFIELD and P. K. DATTA, J. Biomech. 9 (1976) 131.

    Google Scholar 

  4. D. VASHISHTH, J. C. BEHIRI and W. BONFIELD, ibid. 30 (1997) 763.

    Google Scholar 

  5. T. L. NORMAN, D. VASHISHTH and D. BURT, ibid. 28 (1995) 309.

    Google Scholar 

  6. F. G. EVANS and R. VINCENTELLI, ibid. 2 (1969) 63.

    Google Scholar 

  7. D. B. BURR, M. B. SCHAFFLER and R. G. FREDERICKSON, ibid. 11 (1988) 939.

    Google Scholar 

  8. A. SIMKIN and G. ROBIN, 7 (1974) 183.

  9. R. B. MARTIN and D. B. BURR, J. Biomech. 15 (1982) 137.

    Google Scholar 

  10. X. E. GUO, L. C. LIANG and S. A. GOLDSTEIN, J. Biom. Engin. 120 (1998) 112.

    Google Scholar 

  11. M. B. SCHAFFER, K. CHOI and C. MILGROM, Bone 17 (1995) 521.

    Google Scholar 

  12. T. L. NORMAN and Z. WANG, ibid. 20 (1997) 375.

    Google Scholar 

  13. A. C. COURTNEY, W. C. HAYES and L. J. GIBSON, J. Biomech. 29 (1996) 1463.

    Google Scholar 

  14. B. MARTIN, Calc. Tiss. Int. 53 supll. 1 (1993) S34.

    Google Scholar 

  15. L. E. CLAES, H. J. WILKE and H. KIEFER, J. Biomech. 28 (1995) 1377.

    Google Scholar 

  16. D. M. ROBERTSON, D. ROBERTSON and C. G. BARRET, ibid. 11 (1978) 359.

    Google Scholar 

  17. T. M. WRIGHT and W. C. HAYES, ibid. 10 (1977) 419.

    Google Scholar 

  18. J. C. BEHIRI and W. BONFIELD, ibid. 17 (1984) 25.

    Google Scholar 

  19. T. L. NORMAN, D. VASHISHTH and D. BURR, ibid. 29 (1996) 102.

    Google Scholar 

  20. W. BONFIELD, ibid. 20 (1987) 1071.

    Google Scholar 

  21. J. W. MELVIN and F. G. EVANS, Biomechanics Symposium ASME (New York, 1973) 87.

  22. D. MOYLE and A. J. GAVENS, J. Biomech. 19 (1986) 919.

    Google Scholar 

  23. X. WANG and C. M. AGRAWAL, J. Biom. Mat. Res. 33 (1996) 13.

    Google Scholar 

  24. ASTM Standards E 399-72, Standard Method of Test for Plane-Strain Fracture Toughness of Metallic materials.

  25. J. W. MELVIN, J. Biomech. Eng. 115 (1993) 549.

    Google Scholar 

  26. J. C. BEHIRI and W. BONFIELD, J. Biomech. 22 (1989) 863.

    Google Scholar 

  27. G. R. DAVIS and J. C. ELLIOT, Nucl. Instr. Meth. Phys. Res. A394 (1997) 157.

    Google Scholar 

  28. W. GRAEFF and K. ENGELKE in “Microradiography and microtomography”, S. Ebashi, M. Kohc, E. Rubenstein (North Holland, Amsterdam 1991) 361.

    Google Scholar 

  29. J. C. ELLIOT, P. ANDERSON, X. J. GAO, F. S. L. WONG, G. R. DAVIS and S. E. P. DOWKER, J. X-ray Sci. and Tech. 4 (1994) 102.

    Google Scholar 

  30. ASTM Standards B 771-87, Standard Test for Short Rod Fracture Toughness of Cemented Carbides.

  31. http://www.terratek.com7fracto_2.htm

  32. D. P. H. HASSELMAN and F. F. LANGE in “Fracture Mechanics of Ceramics” Vol. 3, Edited by R.C. Bradt (Plenum Press, New York, 1978) 483.

    Google Scholar 

  33. L. M. BARKER, Int. Fract. Mech. 9 (1977) 361.

    Google Scholar 

  34. L. S. COSTIN, in “symposium on fracture mechanics for ceramics, rocks and concrete”. Chicago, June 1980 ( printed in Baltimora 1981) 169.

  35. B. P. FLANNERY, H. W. DECKMAN, W. G. ROBERGE and K. L. D'AMICO, Science 237 (1987) 1439.

    Google Scholar 

  36. B. P. FLANNERY and W. G. ROBERGE, J. Appl. Phys. 62 (1987) 4668.

    Google Scholar 

  37. G. R. DAVIS and FERRANTIS. L. WONG, Physiol. Meas. 17 (1996) 121.

    Google Scholar 

  38. J. C. ELLIOT, G. R. DAVIS, FERRANTIS. L. WONG, STEPHANIE E. P. DOWKER and C. E. MERCER, Anal. Quimica 93 (1997) S77.

    Google Scholar 

  39. D. T. REILLY, A. H. BURSTEIN and V. H. FRANKEL, J. Biomech. 7 (1974) 271.

    Google Scholar 

  40. D. T. REILLY and A. H. BURSTEIN, J. Bone and Joint Surgery 56-A (1974) 1001.

    Google Scholar 

  41. R. T. BUBSEY, D. MUNZ, W. S. PIERCE and J. L. SHANNON JR., Int. J. of Fracture 18 (1982) 125.

    Google Scholar 

  42. J. C. NEWMAN, in “Chevron-Notched Specimens” (Underwood, Freiman and Baratta editors, printed in Baltimora 1984) 5.

  43. T. AKATSU, E. YASUDA and M. SAKAI, in “Fracture Mechanics of Ceramics”, vol. 11, Ed. R. C. Bradt et al. (Plenum Press, New York 1996) 245.

    Google Scholar 

  44. L. M. BARKER, Engng Fract. Mech. 17 (1983) 289.

    Google Scholar 

  45. T. LANG, B. H. HASEGAWA, S. C. LIEW, J. K. BROWN, S. C. BLANKSPOOR, S. M. REILLY, E. L. GINGOLD and C. E. CANN, J. Nucl. Med. 33 (1992) 1881.

    Google Scholar 

  46. F. G. EVANS and K. T. FABER, J. of Am. Ceramic Soc. 67 (1984) 255.

    Google Scholar 

  47. B. CHARALAMBIDES, M. Phil. thesis, University of London.

  48. T. L. ANDERSON in “Fracture Mechanics: foundamental and applications”, CRC Press, Boca Raton, F.L., 1990.

    Google Scholar 

  49. S. SURESH in “Fatigue of materials”, Cambridge Univ. Press, D.R. Clarke Ed., Great Britain, 1991.

    Google Scholar 

  50. D. MUNZ, R. T. BUBSEY and J. E. SRAWLEY, Int. Jour. Fract. 16 (1980) 354-374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santis, R.D., Anderson, P., Tanner, K.E. et al. Bone fracture analysis on the short rod chevron-notch specimens using the X-ray computer micro-tomography. Journal of Materials Science: Materials in Medicine 11, 629–636 (2000). https://doi.org/10.1023/A:1008909830421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008909830421

Keywords

Navigation