Skip to main content
Log in

DNA Fingerprint Comparison of Rainbow Trout and RTG-2 Cell Line Using Random Amplified Polymorphic DNA

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The detection of genotoxic effects using in vitro cell systems can be extremely useful in risk assessment procedures. However, care should be taken in the extrapolation of in vitro results since, amongst other factors, established cell lines may deviate from the genetic characteristics of their species. In this work, the genetic similarities between the RTG-2 cell line and rainbow trout individuals (Oncorhynchus mykiss) from several fish farms have been studied by the RAPD technique. Results show a significant analogy in the band patterns obtained for both systems, up to 73% of the bands composing the fingerprint of the RTG-2 cell line were found in all the individuals analysed. The inter-population similarity index (Lynch, 1990), considering the RTG-2 cell line as a population, gives a value of 0.931 between both systems. The dendrogram constructed from all the individuals, considering the RTG-2 cell line as just another individual of a single population, showed that the genetic structure of the cell line was not different from those of the other individuals tested. The strong genetic similarity of both systems, together with the previously proven capability of the RAPD technique to detect genetic alterations caused in vitro by genotoxic agents, can be very useful in genetic ecotoxicological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Sabty K. (1991). Handbook of Genotoxic Effects and Fish Chromosomes). Ljubljana, Yugoslavia: J. Stefan Institute.

    Google Scholar 

  • Al-Zahim, M., Newbury, H.J. and Ford-Lloyd, B.V. (1997). Classification of genetic variation in garlic Allium sativum L. revealed by RAPD. HortSciences 32, 1102-4.

    Google Scholar 

  • Anderson, S., Sadinski, W., Shugart, L., Brussard, P., Depledge, M., Wirgin, I. and Wogan, G. (1994). Environ. Health Perspect. 102, 3-8.

    Google Scholar 

  • Atienzar, F., Child, P., Avenden, A., Jha, A., Savva, D., Walker, C. and Depledge, M. (1998). Application of the arbitrarily primed polymerase chain reaction for the detection of DNA damage. Marine Environ. Res. 46, 331-5.

    Google Scholar 

  • Atienzar, F., Conradi, M., Avenden, A., Jha, A. and Depledge, M. (1999). Qualitative assessment of genotoxicity using RAPD: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo a pyrene. Environ. Toxicol. Chem. 18, 2275-82.

    Google Scholar 

  • Atienzar, F., Cordi, B., Donkin, M.E., Evenden, A.J., Jha, A.N. and Depledge, M.H. (2000). Comparison of ultravioletinduced genotoxicity by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae Palmaria palmate. Aquat. Toxicol. 50, 1-12.

    Google Scholar 

  • Bardakci, F. and Skibinski, D.O.F. (1994). Application of the RAPD technique in Tilapia fish, species and subspecies identification. Heredity 73, 117-23.

    Google Scholar 

  • Bearmore, J.A., Dobzhansky, T.H. and Paulovsky, D. (1960). An attempt to measure the fitness of monomorphic and polymorphic populations of Drosophila pseudoobcura. Heredity 14, 49-55.

    Google Scholar 

  • Becerril, C., Ferrero, M., Sanz, F. and Castano, A. (1999). Detection of mitomycin C-induced genetic damage in fish cells by use of RAPD. Mutagenesis 14, 449-56.

    Google Scholar 

  • Bielawski, J.P. and Pumo, D.E. (1997). Ramdomly amplified polymorphic DNA RAPD analysis of Atlantic Coast striped bass. Heredity 78, 32-40.

    Google Scholar 

  • Calleja, C. (1998). Establecimiento de relaciones filogeneticas mediante marcadores moleculares en las especies del genero Barbus en la peninsula Iberica. Tesis Doctoral. Univ. Compl. Fac. Madrid.

    Google Scholar 

  • Conte, C., Mutti, I., Puglisi, P., Ferrarini, A., Regina, G., Maestri, E. and Marmiroli, N. (1998). DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosfere 37, 2739-49.

    Google Scholar 

  • Dinesh, K.R., Lim, T.M., Chua, K.L., Chan., W.K. and Phang P.E. (1993). RAPD analysis: an efficient method of DNA fingerprinting in fishes. Zool. Sci. 10, 849-54.

    Google Scholar 

  • Ferrero, M., Castano, A., Gonzalez, A., Sanz, F. and Becerril, C. (1998). Characterization of RTG-2 fish cell line by random amplified polymorphic DNA. Ecotoxicol. Environ. Safety 40, 56-64.

    Google Scholar 

  • Hadrys, H., Balick, M. and Schierwater, B. 1992. Applications of random amplified polymorphic DNA RAPD in molecular ecology. Mol. Ecol. 1, 55-63.

    Google Scholar 

  • Hay, R., Marvin, M.C., Chen, T.R., McClintock, P. and Reid, Y. (eds.) (1988). Catalogue of Cell Line & Hybridomas, 6th Ed. Rockville, MD: ATCC.

    Google Scholar 

  • Henry, R.J., Ko, H.L. and Weining, S. (1997). Identification of cereals using DNA-based technology. Cereal Food World 42, 26-29.

    Google Scholar 

  • Koh, M.C., Lim, C.H., Chua, S.B., Chew, S.T. and Phang, S. (1998). Random amplified polymorphic DNA RAPD fingerprints for identification of red meat animal species. Meat Sci. 48, 275-85.

    Google Scholar 

  • Krane, D.E., Sternberg, D.C. and Burton, G.A. (1998). Randomly amplified polymorphic DNA profile-based measures of genetic diversity in crayfish correlated with environmental impacts. Environ. Toxicol. Chem. 18, 504-8.

    Google Scholar 

  • Kubota, Y., Shimada, A. and Shima, A. (1992). Detection of gamma ray induced DNA damages in malformed dominant lethal embryos of the Japanese medaka Orycias latipes using AP-PCR fingerprinting. Mutat. Res. 283, 263-70.

    Google Scholar 

  • Kubota, Y., Shimada, A. and Shima, A. (1995). DNA alterations detected in the progeny of paternally irradiated Japonese medaka fish Orycias latipes. Proc. Natl. Acad. Sci. USA 92, 330-4.

    Google Scholar 

  • Lynch, M. (1990). The similarity index and DNA fingerprinting. Mol. Biol. Evol. 7, 478-84.

    Google Scholar 

  • Lynch, M. and Mulligan, B.G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3, 91-9.

    Google Scholar 

  • McCarthy, J.F. and Shugart, L.R. (1990). Biological markers of environmental contamination. In J.F. McCarthy (ed) Biomarkers of En¨ironmental Contamination, pp. 3-14. Boca Raton, FL: Lewis.

    Google Scholar 

  • McDonald, J.K. and Ayala, F.J. (1974). Genetic response to environmental heterogeneity. Nature 250, 572-4.

    Google Scholar 

  • OCDE. (1998). Addendum to OCDE Guidelines for Testing Chemicals 1998. France: OCDE.

    Google Scholar 

  • Pritchard, M.K., Fournie, J.W. and Blazer, V.S. (1996). Hepatic neoplasms in wild common carp. J. Aquat. Animal Health 8, 111-9.

    Google Scholar 

  • Rohlf, J. 1990. Numerical Taxonomy and Multivariate Analysis System. NTSYS-pc. New York: Dept. Ecol. Ecol.

    Google Scholar 

  • Saitou, N. and Nei, M. (1987). The neighbor-joining method, a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4, 406-25.

    Google Scholar 

  • Savva, D. (1996). DNA fingerprinting as a biomarker assay in ecotoxicology. Tox. Ecotoxicol. News 3, 110-40.

    Google Scholar 

  • Savva, D. (1998). Use of DNA fingerprinting to detect genotoxic effects. Ecotoxicol. Environ. Safety 41, 103-6.

    Google Scholar 

  • Sheridan, A.K. (1995). The genetic impacts of human activities on wild fish populations. Rev. Fisheries Sci. 3(2), 91-108.

    Google Scholar 

  • Sneath, T.H.A. and Sokal, R.R. (1973). Numerical Taxonomy. San Francisco: Freeman.

    Google Scholar 

  • Sokal, R.R. and Michener, C.D. (1958). A statistical method for evaluating systematic relationship. Univ. Kansas Sci. Bull. 38, 1409-38.

    Google Scholar 

  • Szalai, G., Toth, A., Lasztity, R. and Salgo, A. (1997). Techniques based on DNA determination in food quality control. Elelmiszer¨izsgalati-Koezlemenyek 43, 97-103.

    Google Scholar 

  • Theodorakis, C.W. and Shugart, L.R. (1997). Genetic ecotoxicology II: population genetic structure in mosquitofish exposed in situ to radionuclides. Ecotoxicology 6, 335-54.

    Google Scholar 

  • Theodorakis, C.W., Bickman, J.M., Elbi, T., Shugart, L.R. and Chesser, R.K. (1998). Genetics of radionuclidecontaminated mosquitofish populations and homology between Gambusia affinis and G. holbrooki. Environ. Toxicol. Chem. 17, 1992-8.

    Google Scholar 

  • Walker, C.H. (1998). Biomarker strategies to evaluate the environmental effects of chemicals. Environ. Health Perspect. 106, 613-20.

    Google Scholar 

  • Warren, A. J., Maccubbin, A.E. and Hamilton, W. (1998). Detection of mitomycin C-DNA adducts in vivo by 32 P-postlabeling: time course for formation and removal of adduct and biochemical modulation. Cancer Res. 58, 453-61.

    Google Scholar 

  • Williams, J., Kuberlik, A., Livak, K., Rafalski, J. and Tingey, S. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 56-78.

    Google Scholar 

  • Wolf, K. and Quimby, M.C. (1969). Fish cell and tissue culture. In W.S. Hoar and Randall (eds), Fish Physiology, Vol. 3. New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerril, C., Acevedo, H., Ferrero, M. et al. DNA Fingerprint Comparison of Rainbow Trout and RTG-2 Cell Line Using Random Amplified Polymorphic DNA. Ecotoxicology 10, 115–124 (2001). https://doi.org/10.1023/A:1008902109692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008902109692

Navigation